首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Vegetable oils are very heterogeneous materials with a wide distribution of triacylglycerol structures and double‐bond contents. The hydrogenation of epoxidized soybean oil (ESO) produces polyols having a functionality distribution related to that of soybean oil. Therefore, these polyols are convenient substances for studying the impact of structural heterogeneity on network formation and properties. Polyols of hydroxyl numbers ranging from 225 to 82 mg KOH/g and weight‐average functionalities ranging from 4.4 to 2.7 were obtained by the variation of the time of hydrogenation of ESO. An analysis of the functionality distribution in polyols shows that gel points with diisocyanates vary from 54 to 76% conversion. The molecular weights of the network chains of polyurethanes prepared from these polyols and diphenyl methane diisocyanate varied from 688 to 1993. Polyols with hydroxyl numbers above 200 mg KOH/g gave glassy polymers, whereas those below that value gave rubbers. The heterogeneity of polyols had a negative effect on the elastic properties only at low crosslinking densities. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

2.
Various types of polyurethanes were synthesised from two classes of polyols: (i) 1,4-butane diol or selected polytetrahydrofuran (PTHF) diols of different average molecular weights in the range ~300–2300; (ii) mono- or bisglucosides derived from each of these diols. Linear or crosslinked polymers were prepared by reaction with diphenylmethane diisocyanate (MDI) and the properties of polymers from each class of polyol were compared. Higher PTHF molecular weights produced better properties for the diol based materials whereas lower (parent) PTHF molecular weights favoured the glucoside based materials. Segmented polymers were prepared from reaction with MDI and the chain extender ethylene glycol (EG). Manipulation of the cure conditions and hard block concentration produced materials of widely differing properties. At certain hard block concentrations and using rapid (high temperature) curing the glucoside based materials were (i) superior in properties to the diol based materials and (ii) had similar properties to commercial reaction injection moulding polyurethanes.  相似文献   

3.
Fifty vegetable oil‐based polyols were characterized in terms of their hydroxyl number and their potential of replacing up to 50% of the petroleum‐based polyol in waterborne rigid polyurethane foam applications was evaluated. Polyurethane foams were prepared by reacting isocyanates with polyols containing 50% of vegetable oil‐based polyols and 50% of petroleum‐based polyol and their thermal conductivity, density, and compressive strength were determined. The vegetable oil‐based polyols included epoxidized soybean oil reacted with acetol, commercial soybean oil polyols (soyoils), polyols derived from epoxidized soybean oil and diglycerides, etc. Most of the foams made with polyols containing 50% of vegetable oil‐based polyols were inferior to foams made from 100% petroleum‐based polyol. However, foams made with polyols containing 50% hydroxy soybean oil, epoxidized soybean oil reacted with acetol, and oxidized epoxidized diglyceride of soybean oil not only had superior thermal conductivity, but also better density and compressive strength properties than had foams made from 100% petroleum polyol. Although the epoxidized soybean oil did not have any hydroxyl functional group to react with isocyanate, when used in 50 : 50 blend with the petroleum‐based polyol the resulting polyurethane foams had density versus compressive properties similar to polyurethane foams made from 100% petroleum‐based polyol. The density and compressive strength of foams were affected by the hydroxyl number of polyols, but the thermal conductivity of foams was not. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

4.
Polyurethanes were synthesized from polyester polyols, derived from PET Waste. The PET waste was first depolymerized by glycolysis. The glycolysized products were reacted with adipic acid to yield polyester polyols, and the polyester polyols were then reacted with either MDI or TDI to obtain polyurethanes. In this article, the thermal properties of the polyurethanes obtained are discussed in detail. © 1994 John Wiley & Sons, Inc.  相似文献   

5.
6.
Polyols are polymers that contain multiple hydroxyl groups in their structure. They are generally produced from petroleum derivatives and have a relevant commercial value as building blocks, intermediates in organic synthesis, or precursors for production of polyurethanes. New alternatives for green synthesis of polyols involve the substitution of some hazardous petrochemical derivatives by others based on biomass and which are safer and environmentally more benign. This mini‐review assesses the synthesis processes of some relevant biomass polyols, products that are becoming a commercial reality. © 2016 Society of Chemical Industry  相似文献   

7.
Among the various polymers, polyurethanes are likely the most versatile specialty polymers. These polymers are widely used in many applications such as foams, coatings, insulations, adhesives, paints and upholstery. Similar to many polymers, polyurethanes relies on petrochemicals as raw materials for its major components. Indeed, nowadays many researches have focused to replace petroleum-based resources with renewable ones to improve polyurethanes sustainability. Polyurethanes are synthesized by polymerization reactions between isocyanates and polyols. Only a few isocyanates are commonly used in polyurethane industries, while a variety of polyols are available. Renewable materials such as vegetable oils are promising raw materials for the manufacture of polyurethane components such as polyols. Vegetable oils are triglycerides which are the esterification product of glycerol with three fatty acids. Several highly reactive sites including carbon-carbon double bond, allylic position and ester group in triglycerides and fatty acids open the opportunities for various chemical modifications for new polyol with different structures and functionalities. Different methods such as are epoxidation, ozonolysis, hydroformylation and metathesis have been widely studied to synthesise bio-polyol from vegetable oil for new polyurethanes, which depend on triglyceride and isocyanate reagents used. The incorporation of a vegetable oil moiety can enhance thermal stability and mechanical strength of polyurethanes. Similar to bio-polyol, the development of renewable resource based bio-isocyanates is also gained attention to produce entirely bio-polyurethanes. This article comprehensively reviews recent developments in the preparation of renewable resource based polyols and isocyanates for producing polyurethanes and applications.  相似文献   

8.
New types of polyurethanes were prepared by reacting soybean oil‐based polyol and different isocyanates. The polyurethanes can be used as foams, elastomers, coatings, adhesives, etc. Their properties strongly depend on crosslinking density and the structure of isocyanates. Aromatic triisocyanates impart the highest density, glass transition, modulus, and tensile strength, but have the lowest elongation at break, swelling in toluene, and impact resistance. Aliphatic triisocyanates and diisocyanates give rubbery materials with the highest elongation at break, highest swelling, and the lowest tensile strength. Polyurethanes with aromatic and cycloaliphatic diisocyanates were similar in properties, with values between those of the two groups. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2912–2916, 2003  相似文献   

9.
High density triol‐based polyurethane (PU) foams were developed from aromatic triol isomers prepared from erucic acid. The triol monomers were crosslinked with 4,4′‐diphenylmethane diisocyanate (MDI) into PU foams. The foam's properties were studied by Fourier transform infrared (FTIR) spectroscopy, X‐ray diffraction (XRD), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The foams were analyzed for closed cell content and compression strength. The effect of the benzene ring in the polyol structure on the physical properties of these new PU foams was compared with high density foams made from aliphatic polyols originating from canola oil. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
Acrylated soybean oil was irradiated in the near UV in the presence of free radical photoinitiators. Given the high substitution density of acrylic moieties, these oils responded very rapidly to the photopolymerization giving high yields of crosslinked materials within a few seconds. The activity of three photoinitiators was compared and the ensuing networks were characterized in terms of crosslink density through swelling measurements. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3218–3221, 2006  相似文献   

11.
The hydroxyl group contents of four technical lignins [Indulin AT (Meadwestvaco), Alcell (Repap), Curan 27‐11P (Borregaard LignoTech), and Sarkanda (Granit SA)] were investigated in view of their valorization as polyols in polyurethane synthesis. The different hydroxyl group contents were determined by the following methods: titration and 1H‐NMR, 13C‐NMR, and 31P‐NMR spectroscopy. The titration method chosen was on the basis of a standard method commonly used to characterize commercial polyols for polyurethanes synthesis. The values of the total and phenolic hydroxyl contents determined by the different techniques were found to be in good agreement. For the total hydroxyl contents, coefficients of variation of 5.6% (Alcell), 3.2% (Indulin AT), 2.3% (Sarkanda), and 6.2% (Curan 27‐11P) were established. For the phenolic hydroxyl contents, a good correlation was observed between data obtained from 31P‐NMR and 13C‐NMR for all lignin samples, except for the Sarkanda lignin, for which a relatively high coefficient of variation (12.6%) was found. For softwood lignins (Indulin AT and Curan 27‐11P), the phenolic hydroxyl content determined by 1H‐NMR was always lower than that deduced from 31P‐NMR and 13C‐NMR spectroscopy. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
This study investigated the preparation of polyols and waterborne polyurethane dispersions (CG‐WPUDs) from biodiesel‐derived crude glycerol. The polyols were produced from biodiesel‐derived crude glycerol via a thermochemical conversion process, which converted crude glycerol components such as glycerol, free fatty acids, and methyl esters of fatty acids (FAMEs) into polyols under optimized reaction conditions. CG‐WPUDs with different hard segments (41.0% to 63.2 wt %) were prepared from the crude glycerol‐based polyols produced. PU coating films cast from CG‐WPUDs showed increasing glass transition temperatures (Tg) from 63°C to 81°C when hard segment content increased from 41.0% to 63.2% and had good thermal stability up to 240°C. CG‐WPUD‐based coatings showed excellent adhesion to steel panel surfaces, pencil hardness as high as F, but relatively low flexibility. This study demonstrated the potential of biodiesel‐derived crude glycerol for the production of bio‐based polyols and WPUDs. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41425.  相似文献   

13.
Hydroformylation of methyl soyate produces a mixture of fatty acid methyl esters with zero, one, two, and three hydroxyl groups, the major component being with two hydoxyls (around 50%). Polymerization of methyl esters of hydroxy fatty acids gives a hyperbranched product with a different content of hydroxyl groups depending on the degree of conversion. Molecular weights can be controlled by controlling the degree of conversion but also using monofunctional components. A range of hyperbranched polyols with acceptable viscosities and functionalities, suitable for flexible applications, was obtained by stopping the reaction at varying degrees of conversion. Monte-Carlo simulation of the polymerization of hydroxylated methyl soyate gave molecular weights and polydispersity which were compared with experimental values. Although hydroxylated methyl soyate contains considerable amounts of mono- and difunctional fatty acids, the system produces a physical gel at the highest conversions. This is due to very high molecular weights and was confirmed by experiments and the simulation. The simulation unexpectedly gave lower molecular weights but wider distribution than the experiments. This discrepancy was explained by the combination of experimental difficulties and possible side reactions leading to higher molecular weights. Functionality of polyols determined from gel points at critical NCO/OH ratios was reasonably close to predictions. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

14.
Polyurethane Networks (PUNs) were synthesized using polyols derived from soybean oil, petroleum, or a blend of the two in conjunction with diisocyanate. The soybean‐based polyols (SBPs) were prepared using air oxidation, or by hydroxylating epoxidized soybean oil. Some of the networks were subjected to several solvents to determine their respective swelling behavior and solubility parameters. Sol‐fractions were also determined, and DMA experiments were utilized to monitor the changes in storage modulus and tan δ with temperature for networks with sol and with the sol extracted. A linear relationship was noted between the hydroxyl number of a SBP and the glass transition temperature of its corresponding unextracted PU network within the range of hydroxyl numbers (i.e., 55–237 mg KOH/g) and glass transition temperatures (i.e., ?21–+83°C) encountered in this work. This same linear relationship was realized between the weighted hydroxyl number of soy and petroleum‐based polyol blends and the glass transition temperature of the resulting unextracted and extracted network PUs within the ranges utilized in this study (i.e., 44–57 mg KOH/g, ?54–19°C). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1432–1443, 2006  相似文献   

15.
Foam stability and segmented polymeric phase morphology of polyurethane foams synthesized partially and completely from castor oil are investigated. Preliminary analysis of the impact of alterations in the polymeric phase on macroscopic stress dissipation in foams is also carried out. The stability and morphology show unique trends depending on the concentration of castor oil used in foam synthesis. While low and intermediate concentrations of castor oil does not significantly affect the foaming process; at high concentrations, the volumetrically expanding liquid matrix remains in a nonequilibrium state during the entire foaming period, resulting in significant foam decay from top. This increases the final foam cell density and decreases the plateau border thickness at bottom. In the polymeric phase of castor oil based foams, the fraction of monodentate urea increases at the cost of non‐hydrogen bonded urea. These monodentate urea domains undergo flocculation in foams synthesized completely from castor oil, thus prominently modifying the segmented morphology. The glass transition temperature of soft segments of partially substituted foams shows moderate increase, with indications of phase mixing between the polyether and castor oil generated urethane domains. Foams synthesized entirely from castor oil have significant sol fraction due to unreacted oligomers. The microscopic alterations in polymeric phase reduce the elastic recovery of partially substituted castor oil foams compared to its viscous dissipation under an applied stress. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40668.  相似文献   

16.
Liquefaction is known to be an effective method for converting biomass into a polyol. However, the relationships between bark liquefaction conditions and properties of the resulting foams are unclear. In this study, polyurethane foams (PUF) were made using bark‐based polyols obtained through liquefaction reactions of bark at two different temperatures (90 and 130°C). Through systematic characterization of the PUFs the influence of the liquefied bark and liquefaction conditions on foam properties could be observed. The bark‐based foams had similar foaming kinetics, thermal stability, and glass transition temperatures compared with the PEG‐based control foam. The bark‐based PUF from the polyol obtained at the higher liquefaction temperature showed comparable specific compressive strength to the PEG‐based control foam. Lastly, both bark foams exhibited a high amount of open‐cell content, with the foam made from the lower temperature liquefied polyol having poor cell morphology. This deviation from the controls in the open‐cell content may explain the lower modulus values observed in the bark PUFs due to the lack of cell membrane elastic stretching as a strengthening mechanism. These results demonstrated the influence of the bark liquefaction conditions on foam properties, thereby providing a better fundamental understanding for the practical application of bark‐based PUFs. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40599.  相似文献   

17.
A series of flexible polyurethane foams with different polyol compositions were synthesized through the replacement of a portion of the petroleum‐based polyether polyol with biobased polyols, namely, glycerol (GLY) and hydroxylated methyl esters (HMETO). HMETO was synthesized by the alkaline transesterification of tung oil (TO; obtaining GLY as a byproduct) and the subsequent hydroxylation of the obtained methyl esters with performic acid generated in situ. FTIR spectroscopy, 1H‐NMR, and different analytical procedures indicated that the hydroxyl content increased significantly and the molecular weight decreased with respect to those of the TO after the two reaction steps. The characterization of the obtained foams, achieved through the measurement of the characteristic reaction times, thermal and dynamic mechanical analysis, scanning electronic microscopy, and density measurements, is reported and discussed. The most important changes in the modified foams were found with the addition of GLY to the formulation; this led to an increased foam density and storage rubbery modulus, which were associated with a higher crosslinking density because of the decrease in the chain length between crosslinking points. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43831.  相似文献   

18.
Methyl oleate, a kind of vegetable oil derivatives, was used as the raw material to synthesize novel polyols containing nitrogen and phosphorus (PNP) by three steps: amidaion, epoxidation, and ring-opening reaction. The structure of the ensuing PNP was characterized by gel permeation chromatography, Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy. Then, polyurethane films were prepared by mixing the resulting polyols (PNP) and poly-(tetra methylene glycol) with isophorone diisocyanate in different proportions. After that, the thermostability of polyurethane films was investigated by limiting oxygen index (LOI), thermogravimetry, and cone calorimeter test. Similarly, mechanical property of polyurethane films was studied by tensile test. The results showed that as the amount of PNP increased, the tensile strength of polyurethane films increased from 2.0 to 13.5 MPa, the LOI values of polyurethane films went up from 20.1% to 25.5%. Moreover, the initial decomposition temperature of polyurethane films improved from 280 to 312°C and the total heat release drooped from 32.2 to 21.7 kW/m2 without adding any other flame retardant. Therefore, it was observed that the polyurethane films have superior thermal stability and mechanical property and appear suitable for a wide range of applications.  相似文献   

19.
Biobased polyols were synthesized from reaction between epoxidized soybean oil and lactic, glycolic, or acetic acids. Polyols were characterized by NMR, alcohol and acid titration, and SEC. These analyses allowed to determine an average hydroxyl functionality between 4 and 5, with an oligomer content close to 50 wt%. Synthesized polyols were formulated with isocyanate to yield polyurethanes (PUs). Thermal and mechanical properties of obtained materials showed that synthesized polyols lead to rigid and brittle material with Young moduli higher than 900 N/mm2 at RT and with Tg values around 50°C. Practical application: The products of the chemistry described in this contribution, i.e.: polyol from vegetable oils and lactic, glycolic, or acetic acids, provide biobased building blocks for further PUs syntheses by reaction with diisocyanates. The obtained PUs are partially biobased and may be applied as binders and coatings.  相似文献   

20.
Novel biobased polyurethanes were synthesized from rubber seed oil (RSO), a renewable resource. The RSO monoglyceride, together with xylene and hexamethylene diisocyanate (HMDI), was employed to synthesize the desired urethane‐based prepolymer with isocyanate (NCO)‐terminated end groups followed by curing. The degrees of crosslinking of the polyurethane after curing were assessed with their swelling behavior. The properties of the resulting polyurethanes were found to be dependent on the type of diisocyanate and their molar ratios to the RSO monoglyceride. The network structures, which were assessed through swelling studies, showed that networks based on HMDI with an NCO/OH ratio of 1.50 were better crosslinked than with those toluene diisocyanate. The thermal properties of the samples analyzed by thermogravimetric analysis showed two and three decomposition stages in aliphatic‐ and aromatic‐based RSO polyurethanes, respectively. The highest stability with initial decomposition temperature (253°C) and percentage residual at 500°C (11.4%) was achieved with an aliphatic‐based RSO polyurethane. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号