首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
为了获得线性载荷作用下的简支圆板极限载荷的解析解,本文提出了刚塑性第一变分原理的运动许可应变场,并首次以GM(几何中线)屈服准则塑性比功进行了塑性极限分析.首次获得了GM准则下圆板极限载荷的解析解,该解为圆板半径a、材料屈服极限σs及板厚h的函数.与Tresca、TSS及Mises预测的极限载荷比较表明:Tresca准则预测极限荷载下限,TSS屈服准则预测极限载荷的上限,GM屈服准则比塑性功解析结果恰居于两者之间;GM解略低于Mises解,两者相对误差为3.38%.此外,文中还讨论了挠度与相对位置r/a之间的变化关系.  相似文献   

2.
This paper provides a method to estimate plastic loads [defined by the twice‐elastic‐slope (TES)] for elbows with non‐uniform thicknesses under in‐plane bending and under internal pressure, based on systematic FE limit analyses using elastic‐perfectly plastic materials. The intrados thickness is assumed to be up to 30% thicker than the straight pipe thickness, whereas the extrados thickness up to 30% thinner. The FE plastic loads are compared with estimated ones using closed‐form approximations for elbows with uniform thicknesses, to provide guidance on the choice of a representative thickness to predict plastic loads for elbows with non‐uniform thicknesses. Results suggest that the use of the straight pipe thickness gives overall satisfactory predictions. Estimated plastic loads are conservative, and differ from FE results by less than 10% for all cases considered. Despite its simplicity, results look very promising, and thus the use of the straight pipe thickness can be recommended to estimate plastic loads for elbows with non‐uniform thicknesses in practice.  相似文献   

3.
Constraint handling is an important aspect of evolutionary constrained optimization. Currently, the mechanism used for constraint handling with evolutionary algorithms mainly assists the selection process, but not the actual search process. In this article, first a genetic algorithm is combined with a class of search methods, known as constraint consensus methods, that assist infeasible individuals to move towards the feasible region. This approach is also integrated with a memetic algorithm. The proposed algorithm is tested and analysed by solving two sets of standard benchmark problems, and the results are compared with other state-of-the-art algorithms. The comparisons show that the proposed algorithm outperforms other similar algorithms. The algorithm has also been applied to solve a practical economic load dispatch problem, where it also shows superior performance over other algorithms.  相似文献   

4.
This paper proposes plastic loads (limit load and twice-elastic-slope (TES) plastic load) for pipe bends with circumferential through-wall and part-through surface cracks under in-plane bending, based on three-dimensional FE limit analyses. The material is assumed to be elastic-perfectly plastic, and both the geometrically linear (small strain) and nonlinear (large geometry change) effects are considered. Regarding a crack location, both extrados and intrados cracks are considered. Based on the FE results, closed-form approximations of limit and TES plastic loads are proposed for practical applications, and compared with corresponding solutions for straight pipes.  相似文献   

5.
A methodology for stress state limit recovering in ball screws return system is presented in this paper. A lot of different researches and standards have been already performed for rolling bearings load static and dynamic rating (ISO 76, ISO 281), but nothing has been said for ball screws except in some drafting standards (Draft standard DIN 69051-4). Also the overall stress limits introduced for rolling bearings in ISO standards are not valid for ball screws bearing because of their different contact geometry. Moreover, the plastic contact due to impact between the spheres and the ball return system, very important for ball screw bearing life determination, has been investigated in very recent works only for nominal impacts by Hung et al. [Impact failure analysis of re-circulating mechanism in ball screw. Eng Failure Anal 2004;11:561–73].  相似文献   

6.
Torsion is one of the primary actions in members curved in space, and so an accurate spatially curved‐beam element needs to be able to predict the elasto‐plastic torsional behaviour of such members correctly. However, there are two major difficulties in most existing finite thin‐walled beam elements, such as in ABAQUS and ANSYS, which may lead to incorrect predictions of the elasto‐plastic behaviour of members curved in space. Firstly, the integration sample point scheme cannot capture the shear strain and stress information resulting from uniform torsion. Secondly, the higher‐order twists are ignored which leads to loss of the significant effects of Wagner moments on the large twist torsional behaviour. In addition, the initial geometric imperfections and residual stresses are significant for the elasto‐plastic behaviour of members curved in space. Many existing finite thin‐walled beam element models do not provide facilities to deal with initial geometric imperfections. Although ABAQUS and ANSYS have facilities for the input of residual stresses as initial stresses, they cannot describe the complicated distribution patterns of residual stresses in thin‐walled members. Furthermore, external loads and elastic restraints may be applied remote from shear centres or centroids. The effects of the load (and restraint) positions are important, but are not considered in many beam elements. This paper presents an elasto‐plastic spatially curved element with arbitrary thin‐walled cross‐sections that can correctly capture the uniform shear strain and stress information for integration, and includes initial geometric imperfections, residual stresses and the effects of the load and restraint positions. The element also includes elastic restraints and supports, which have to be modelled separately as spring elements in some other finite thin‐walled beam elements. Comparisons with existing experimental and analytical results show that the elasto‐plastic spatially curved‐beam element is accurate and efficient. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
8.
The transient elastodynamic response of a transversely isotropic material containing a semi-infinite crack under uniform impact loading on the faces is examined. The crack lies in a principle plane of the material, but the crack front does not coincide with a principle direction. Rather, the crack front is at an angle to a principle direction and thus the problem becomes more three-dimensional in nature. Three loading modes are considered, i.e., opening, in-plane shear and anti-plane shear. The solutions for the stress intensity factor history around the crack tip are found. Laplace and Fourier transforms together with the Wiener-Hopf technique are employed to solve the equations of motion directly. The asymptotic expression of stress near the crack tip leads to a closed-form solution for the dynamic stress intensity factor for each loading mode. It is found that the stress intensity factors are proportional to the square root of time as expected. Results given here converge to known solutions in transversely isotropic materials with a crack oriented along a principle direction and isotropic materials as special cases. The results of this analysis are used to find approximate strain energy release rates for dynamically loaded penny shaped cracks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号