首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
In digital audio watermarking, the watermark's vulnerability to desynchronization attacks has long been a difficult problem. According to the audio statistics characteristics and synchronization code technique, a new robust audio watermarking scheme against desynchronization attacks is proposed in this paper. Firstly, the original digital audio is segmented and then each audio segment is cut into two parts. Secondly, with the spatial watermarking technique, the synchronization code is embedded into the statistics average value of audio samples in the first part. Finally, the second part of audio segment is cut into audio sections, the DWT is performed on the audio sections, and the watermark bit is embedded into the statistics average value of low frequency components. Experimental results show that the proposed scheme is inaudible and robust against common signals processing, including MP3 compression, low-pass filtering, noise addition, and equalization, etc. Moreover, it also survives several desynchronization attacks, such as random cropping, amplitude variation, pitch shifting, time-scale modification, and jittering, etc.  相似文献   

2.
Desynchronization attack is known as one of the most difficult attacks to resist, for it can desynchronize the location of the watermark and hence causes incorrect watermark detection. It is a challenging work to design a robust audio watermarking scheme against desynchronization attacks. Based on pseudo-Zernike moment and synchronization code, we propose a new digital audio watermarking algorithm with good auditory quality and reasonable resistance toward desynchronization attacks in this paper. Firstly, the origin digital audio is segmented and then each segment is cut into two parts. Secondly, with the spatial watermarking technique, synchronization code is embedded into the statistics average value of audio samples in the first part. And then, map 1D digital audio signal in the second part into 2D form, and calculate its pseudo-Zernike moments. Finally, the watermark bit is embedded into the average value of modulus of the low-order pseudo-Zernike moments. Meanwhile combining the two adjacent synchronization code searching technology, the algorithm can extract the watermark without the help from the origin digital audio signal. Simulation results show that the proposed watermarking scheme is not only inaudible and robust against common signals processing such as MP3 compression, noise addition, resampling, re-quantization, etc., but also robust against the desynchronization attacks such as random cropping, amplitude variation, pitch shifting, jittering, etc.  相似文献   

3.
It is a challenging work to design a robust audio watermarking scheme against various attacks. Wavelet moment invariances are new features combining the moment invariant features and the wavelet features, and they have some excellent characteristics, such as the ability to capture local information, robustness against common signal processing, and the linear relationship between a signal and its wavelet moments etc. Based on wavelet moment and synchronization code, we propose a new digital audio watermarking algorithm with good auditory quality and reasonable resistance against most attacks in this paper. Firstly, the origin digital audio is segmented and then each segment is cut into two parts. Secondly, with the spatial watermarking technique, synchronization code is embedded into the statistics average value of audio samples in the first part. And then, map 1D digital audio signal in the second part into 2D form, and calculate its wavelet moments. Finally, the watermark bit is embedded into the average value of modulus of the low-order wavelet moments. Meanwhile combining the two adjacent synchronization code searching technology, the algorithm can extract the watermark without the help from the origin digital audio signal. Simulation results show that the proposed watermarking scheme is not only inaudible and robust against common signals processing such as MP3 compression, noise addition, resampling, and re-quantization etc., but also robust against the desynchronization attacks such as random cropping, amplitude variation, pitch shifting, and jittering etc.  相似文献   

4.
基于音频统计特性的数字水印嵌入算法   总被引:1,自引:0,他引:1  
结合数字音频时频域统计特性及同步码技术, 提出了一种可有效抵抗去同步攻击的混合域数字音频水印嵌入算法. 该算法首先结合数字水印与同步码(大小), 对原始音频载体进行分段处理, 并将每个音频数据段分割成两部分用于嵌入同步码与水印信息; 然后利用时间域音频样本统计特性, 将同步码信息嵌入到音频样本的统计均值上; 最后根据频率域小波系数统计特性, 将数字水印嵌入到低频小波系数的平均值内.  相似文献   

5.
一种基于均值量化的抗去同步攻击数字水印算法   总被引:1,自引:0,他引:1  
基于量化调制的音频水印方案以其原理简单、操纵灵活等特点,已引起人们广泛关注,但现有方案不同程度地存在鲁棒性较差等不足之处.结合音频统计均值稳定特性及同步码技术,提出了一种新的数字音频水印嵌入算法,该算法选取稳健的16位巴克码作为同步标记,通过量化音频样本统计均值嵌入同步码,同时结合听觉掩蔽特性量化低频小波系数平均值嵌入数字水印.仿真实验结果表明,本算法不仅具有较好的不可感知性,而且对常规信号处理(MP3压缩、低通滤波、添加噪声、均衡化等)和去同步攻击(随机剪切、幅度缩放、抖动等)均具有较好的鲁棒性.  相似文献   

6.
Desynchronization attack is known as one of the most difficult attacks to resist, for it can desynchronize the location of the watermark and hence causes incorrect watermark detection. It is a challenging work to design a robust audio watermarking scheme against desynchronization attacks. Based on undecimated discrete wavelet transform (UDWT) and invariant histogram, we propose a new content based audio watermarking algorithm with good audible quality and reasonable resistance toward desynchronization attacks in this paper. Firstly, the undecimated discrete wavelet transform (UDWT) is performed on original host audio. Secondly, the invariant histogram is extracted from a selected wavelet coefficients range in the low frequency subband. Then, the bin of histogram is divided into many groups, each group including four consecutive bins. For each group, one watermark bit is embedded by reassigning the number of wavelet coefficients in this group of four bins. Finally, the digital watermark is embedded into the original audio signal in UDWT domain by modifying a small set of wavelet coefficients. Simulation results show that the proposed watermarking scheme is not only inaudible and robust against common signal processing operations such as MP3 compression, noise addition, and low-pass filtering etc, but also robust against the desynchronization attacks such as random cropping, time-scale modification, pitch shifting, and jittering etc.  相似文献   

7.
目的 基于数字水印技术的音乐作品版权保护是学术界的研究热点之一,多数数字音频水印方案仅仅能够对抗简单的常规信号处理,无法有效抵抗破坏性较强的一般性去同步攻击。为此,提出了一种基于稳健局部特征的非下采样小波域数字水印算法。方法 利用非下采样小波域平滑梯度检测算子从载体音频中提取稳定的音频特征点,结合数字音频样本响应确定局部特征音频段,采用量化调制策略将数字水印信号重复嵌入局部特征音频段中。结果 选取4段典型的采样频率为44.1 kHz、量化精度为16 bit、长度为15 s的单声道数字音频信号作为原始载体进行测试,并与经典算法在不可感知性和鲁棒性两方面进行对比。结果表明,本文算法在含水印音频与原始载体音频间的信噪比平均提升了5.7 dB,同时常规攻击和去同步攻击下的平均检测率分别保持在0.925和0.913,高于大多数传统算法,表明了本文算法具有较好的不可感知性。在常规信号处理(MP3压缩、重新量化、重新采样等)和去同步攻击(幅度缩放、随机剪切、音调伸缩、DA/AD转换、抖动等)方面均具有较好的鲁棒性。结论 本文利用描述能力强且性能稳定的平滑梯度刻画局部数字音频性质,提出一种基于平滑梯度的非下采样小波域音频特征点提取方法,有效解决了音频特征点稳定性差且分布极不均匀的缺点,提高了数字音频水印对音调伸缩、随机剪切、抖动等攻击的抵抗能力。  相似文献   

8.
Synchronization is crucial to design a robust image watermarking scheme. In this paper, a novel feature-based image watermarking scheme against desynchronization attacks is proposed. The robust feature points, which can survive various signal-processing and affine transformation, are extracted by using the Harris-Laplace detector. A local characteristic region (LCR) construction method based on the scale-space representation of an image is considered for watermarking. At each LCR, the digital watermark is repeatedly embedded by modulating the magnitudes of discrete Fourier transform coefficients. In watermark detection, the digital watermark can be recovered by maximum membership criterion. Simulation results show that the proposed scheme is invisible and robust against common signal processing, such as median filtering, sharpening, noise adding, JPEG compression, etc., and desynchronization attacks, such as rotation, scaling, translation, row or column removal, cropping, and random bend attack, etc.  相似文献   

9.
In this paper, we propose an adaptive audio watermarking scheme based on kernel fuzzy c-means (KFCM) clustering algorithm, which possesses robust ability against common signal processing and desynchronization attacks. The original audio signal is partitioned into audio frames and then each audio frame is further divided as two sub-frames. In order to resist desynchronization attacks, we embed a synchronization code into first sub-frame of each audio frame by using a mean quantization technique in temporal domain. Moreover, watermark signal is hid into DWT coefficients of second sub-frame of each audio frame by using an energy quantization technique. A local audio feature data set extracted from all audio frames is used to train a KFCM. The well-trained KFCM is used to adaptively control quantization steps in above two quantization techniques. The experimental results show the proposed scheme is robust to common signal processing (such as MP3 lossy compression, noise addition, filtering, re-sampling, re-quantizing) and desynchronization attacks (random cropping, pitch shifting, amplitude variation, time-scale modification, jittering).  相似文献   

10.
This paper presents a novel adjustable audio watermarking method with high auditory quality by exploiting the discrete wavelet packet transform (DWPT), psychoacoustic modeling and distortion compensated-dither modulation (DC-DM) quantization. While the DWPT is used to divide the audio frames into several frequency sub-bands, the psychoacoustic model is intergraded to determine the appropriate sub-bands for watermarking and to control the number of embedded bits in each one. Then, the DC-DM technique is used to embed the watermark bits into the appropriate DWPT coefficients. The synchronization code technique is adopted in the proposed method to withstand desynchronization attacks. In order to achieve an adjustable watermarking scheme, two regulator parameters are provided to manage the capacity-robustness trade-off. The performance of the watermarking scheme is evaluated by examining different host audio signals under various watermarking attacks. The results show excellent imperceptibility of watermarked signals with an average ODG of ? 0.3. In addition, the proposed scheme provides strong robustness against the attacks with low capacity. However, high capacity (about 2500 bps) can be achieved while maintaining a reasonable robustness. A comparison with some state-of-the-art audio watermarking schemes reveals that the proposed method provides competitive results.  相似文献   

11.
Desynchronization attack is known as one of the most difficult attacks to resist, which can desynchronize the location of the watermark and hence causes incorrect watermark detection. It is a challenging work to design a robust image watermarking scheme against desynchronization attacks. Based on multi-scale Harris detector and wavelet moment theory, we propose a new content based image watermarking algorithm with low computational complexity, good visual quality and reasonable resistance toward desynchronization attacks in this paper. Firstly, the steady image feature points are extracted from the origin host by using multi-scale Harris detector, and the local feature regions (LFRs) are constructed adaptively according to the feature scale theory. Then, the LFRs are image normalized, and significant regions are obtained from the normalized LFRs by utilizing the invariant centroid theory. Finally, the digital watermark is embedded into the LFRs by modifying wavelet moment invariants of the significant regions. By binding the watermark with the geometrically invariant image features, the watermark detection can be done without synchronization error. Experimental results show that the proposed image watermarking is not only invisible and robust against common image processing operations as sharpening, noise adding, and JPEG compression etc, but also robust against the desynchronization attacks such as rotation, translation, scaling, row or column removal, cropping, and local random bend etc.  相似文献   

12.
Digital watermarking technology is concerned with solving the problem of copyright protection, data authentication, content identification, distribution, and duplication of the digital media due to the great developments in computers and Internet technology. Recently, protection of digital audio signals has attracted the attention of researchers. This paper proposes a new audio watermarking scheme based on discrete wavelet transform (DWT), singular value decomposition (SVD), and quantization index modulation (QIM) with a synchronization code embedded with two encrypted watermark images or logos inserted into a stereo audio signal. In this algorithm, the original audio signal is split into blocks, and each block is decomposed with a two-level DWT, and then the approximate low-frequency sub-band coefficients are decomposed by SVD transform to obtain a diagonal matrix. The prepared watermarking and synchronization code bit stream is embedded into the diagonal matrix using QIM. After that, we perform inverse singular value decomposition (ISVD) and inverse discrete wavelet transform (IDWT) to obtain the watermarked audio signal. The watermark can be blindly extracted without knowledge of the original audio signal. Experimental results show that the transparency and imperceptibility of the proposed algorithm is satisfied, and that robustness is strong against popular audio signal processing attacks. High watermarking payload is achieved through the proposed scheme.  相似文献   

13.
以均值量化索引调制(MQIM)、特征点为理论基础,提出一种新颖的强鲁棒性数字音频水印技术。该算法选取数字音频的局部能量峰值点作为特征,提取稳定的特征点;以特征点为标记,对特征点后的区域进行分段,利用均值量化索引调制将水印嵌入到原始音频的小波域中。水印提取时无需原始图像。仿真实验表明,提出的算法对常规信号处理(MP3压缩、叠加噪声、重新采样、重新量化等)和去同步攻击(随机剪切、幅度缩放、变调、抖动等)均具有较好的鲁棒性。  相似文献   

14.
抗几何攻击的量化鲁棒视频水印技术研究   总被引:1,自引:0,他引:1  
能有效抵抗信号处理又能抵抗几何攻击是当今数字水印研究的热点和难点之一,提出一种能够抵抗信号处理、旋转、缩放和平移的鲁棒视频水印.嵌入方案中,提出几何不变量--基于圆区域内的统计特征不变性;再依据离散余弦变换域(DCT)系数特性,自适应地在DCT域量化嵌入有意义的水印.提取方案中,利用同步信息定位,若发生几何形变则先矫正形变,然后在DCT域中盲提取水印.结果表明,该方案具有较好的透明性,同时具有较强的抗几何形变能力,对MPEG压缩和去帧等攻击具有很强的鲁棒性.  相似文献   

15.
提出了一种稳健的自适应混合域数字音频水印算法,该算法具有以下特点:(1)通过采纳更为稳健的同步信号及其全新嵌入策略,提高了音频水印的抗攻击能力;(2)充分利用DWT的多分辨率特性和DCT的能量压缩特性,改善了数字水印的隐藏效果;(3)结合听觉掩蔽特性自适应确定量化步长,提高了数字水印的不可感知性;(4)以保证不可感知性和稳健性的良好平衡为前提,实现了数字水印的盲检测.仿真实验表明,所提出的算法不仅具有较好的不可感知性,而且对诸如重新采样、重新量化、叠加噪声、低通滤波、随机剪切等攻击均具有较好的稳健性.特别地,该算法对于最为普通的MP3压缩攻击具有极强的抵抗能力(尤其是高压缩比下).  相似文献   

16.
基于小波变换的自同步音频水印算法   总被引:50,自引:2,他引:50  
该文提出了一种基于DWT的自同步音频水印算法.该算法具有如下特点:(1)在隐藏水印信息的同时,嵌入一个同步信号,使水印具有自同步能力;(2)同步信号与水印隐藏于DWT域低频子带,在改善同步信号鲁棒性的同时,利用DWT的时频局部特性,有效地提高在变换域内搜索同步信号的效率,较好地解决了同步信号鲁棒性与其搜索计算量之间的矛盾.实验表明,所提出的方法在抵抗各种通用的音频处理和攻击(如高斯噪声、MP3压缩、重采样、重量化、裁剪等)方面具有良好的性能.  相似文献   

17.
如何有效抵抗去同步攻击是数字图像水印研究领域的热点问题之一。利用图像仿射协变特征,提出一种可有效抵抗去同步攻击的鲁棒水印算法。对目前流行的利用多尺度Harris和SIFT描述算子来匹配图像的方法,后者有较好的匹配效果,对恢复同步水印更加稳定,并且能较好抵抗去同步攻击。该算法利用性能稳定的SIFT算子提取图像特征点,并通过基于最小生成树聚类算法的选择策略获得一组稳定且彼此独立的椭圆仿射协变特征区域,基于特征区域,利用椭圆归一化得到具有缩放和旋转不变性的圆形区域。将圆形区域进行非下采样轮廓变换(NSCT),其中非下采样轮廓变换不仅克服了小波(Wavelet)变换的非奇异性最优基缺点,而且提供了优于轮廓(Contourlet)变换的平移不变性。将水印嵌入变换后的低频子带中。该算法实现盲提取,仿真实验结果表明,提出的算法是有效的且对常规图像处理、几何攻击以及组合攻击均具有较好的鲁棒性。  相似文献   

18.
We propose a new multipurpose audio watermarking scheme in which two complementary watermarks are used.For audio copyright protection,the watermark data with copyright information or signature are first encrypted by Arnold transformation.Then the watermark data are inserted in the low frequency largest significant discrete cosine transform(DCT) coefficients to obtain robustness performance.For audio authentication,a chaotic signal is inserted in the high frequency insignificant DCT coefficients to detect tampered regions.Furthermore,the synchronization code is embedded in the audio statistical characteristics to resist desynchronization attacks.Experimental results show that our proposed method can not only obtain satisfactory detection and tampered location,but also achieve imperceptibility and robustness to common signal processing attacks,such as cropping,shifting,and time scale modification(TSM).Comparison results show that our method outperforms some existing methods.  相似文献   

19.
Some audio watermark schemes robust against desynchronization attacks are based on synchronization code embedded by quantifying signal energy, which have some shortcomings. Such as, (1) they do not verify the authenticity of watermarked signal detected. (2) They are vulnerable to substitution attack. To address the shortcomings and considering the background, a speech content authentication algorithm is proposed in this paper. Firstly, the original speech signal is framed, and each frame is cut into some segments. Secondly, samples of the segments are scrambled, and self-correlation of the scrambled signal is calculated. Lastly, watermark bit generated by frame number is embedded by quantifying the self-correlation. If watermarked signal is attacked, the attacked frames can be detected according to the frame number extracted. Theoretical analysis and experiments demonstrate that the scheme is robust against desynchronization attacks, improves the security, and has a good performance in ability of tampering location.  相似文献   

20.
基于图像特征的数字水印算法研究   总被引:3,自引:0,他引:3       下载免费PDF全文
为了使数字水印具有更鲁棒的抗攻击能力,提出了一种基于图像特征的数字水印新算法。该算法首先利用Harris—Laplace算子提取载体图像特征点;然后结合特征尺度白适应确定局部特征区域;最后,采纳DFT中频幅值比较策略将数字水印信息重复嵌入到多个不相交的局部特征区域中。检测时,根据模糊模式识别的最大隶属度原则检测水印信息。仿真实验结果表明,该新算法不仅具有较好的透明性,而且对常规信号处理(中值滤波、边缘锐化、叠加噪声和JPEG压缩等)和去同步攻击(旋转、平移、缩放、行列去除、剪切和局部随机弯曲等)均具有较好的鲁棒性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号