首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
葛权  雷晓玲  曹益荣  荣东霞  文晓刚 《功能材料》2012,43(13):1745-1747,1751
采用两步法合成磷酸铁锂,第一步先以氯化铁、磷酸二氢铵和磷酸为原料,用水热法合成球状磷酸铁,并研究了温度、不同铁源对其形貌的影响;第二步将制得的磷酸铁与氢氧化锂、PEG-10000混合,在氮气气氛保护下,750℃高温烧制成磷酸铁锂。用X射线衍射(XRD)、扫描电子显微镜(SEM)等表征了磷酸铁及磷酸铁锂的纯度和形貌。制得的磷酸铁锂微球在0.1C充放电时,比容量达到143.5mAh/g。  相似文献   

2.
橄榄石型磷酸铁锂(LiFePO4)由于具有良好的优点,受到社会各界的广泛关注。由于磷酸铁锂自身结构存在的一些缺点,因此导致电子传导率低和锂离子扩散系数小,不仅影响放电倍率,还阻碍工业化的应用。该文采用碳热还原法制备Li FePO4/C正极材料,研究不同三价铁源合成磷酸铁锂材料的电化学性能状况,通过XRD、SEM等手段表征所得材料,并通过恒流充放电等测试了解其电化学性能,从而找到一种最佳的低成本三价铁源,优化固相碳热还原工艺。  相似文献   

3.
提出了一种二次掺碳制备锂离子电池正极材料LiFePO4/C复合材料的合成方法。实验结果表明不同阶段掺碳对合成LiFePO4/C复合材料的晶型没有影响,但对其电化学性能影响明显,二次掺碳能有效地提高容量和改善材料的稳定性;当蔗糖二次加入量为碳与磷酸铁锂质量比为3%(质量分数)时,样品颗粒细小且均匀,同时电化学性能最好,在0.2C倍率下首次放电比容量为161.19mA.h/g,循环20次后仍保持在153.68mA.h/g。  相似文献   

4.
以三聚氰胺为氮源,通过固相法成功合成了掺氮碳包覆的磷酸铁锂10%-NC-LFP。通过扫描电子显微镜和激光颗粒粒度分析来检测材料的微观形貌和宏观颗粒。颗粒表面氮掺杂的碳层可以提高LiFePO_4的电子电导率,与未掺杂的碳(C-LFP)相比,容量更高,倍率性能更好。实验表明,10%-NC-LFP的放电比容量在0.2C时为166mAh/g,在10C时为134mAh/g;C-LFP在0.2C时为164mAh/g,10C时为120mAh/g。本研究方法在提高LiFePO_4导电性方面非常有效,可应用于其他正极材料的合成。  相似文献   

5.
马志鸣  肖仁贵  廖霞  柯翔 《材料导报》2018,32(19):3325-3331
采用液相反应结晶法,在磷源及铁源中添加NaAlO_2,利用在结晶过程中生成的Al(OH)3胶体对结晶面的作用,合成出具有片层纳米结构纺锤体状磷酸铁前驱体,并通过高温固相法进一步制备成磷酸铁锂。采用XRD、FT-IR、SEM、TEM、比表面及孔隙率分析、激光粒度分析和电化学性能测试等手段对样品进行表征分析。结果表明,由具有片层纳米结构的磷酸铁前驱体制备的磷酸铁锂比由无片层纳米结构的磷酸铁前驱体制备的磷酸铁锂在0.1C下的首次放电容量提升了20%,达到151.48mAh/g,电极电荷转移电阻降低了约75%,仅为27.23Ω;0.1C倍率下循环50次后容量保持率可达96%。同时,对Al(OH)3胶体影响片层纳米结构磷酸铁生成机制进行了分析和讨论。  相似文献   

6.
以间苯二酚和甲醛为前驱体,1,6-己二胺作为交联剂,通过水热法制备出一种球形纳米酚醛树脂基碳微球材料。采用N2吸附、XRD及SEM对材料的结构和形貌表征表明,交联剂的加入可得到球形形貌的碳纳米微球,同时,改变交联剂的量可以控制球形颗粒的大小及结构,但FT-IR表明对表面官能团未有影响。利用循环伏安法、恒流充放电及交流阻抗曲线对碳球材料电化学性能进行评价,在-0.95~0 V电压范围内,碳球材料具有典型的双电层电容和充放电可逆性。当1,6-己二胺与间苯二酚摩尔比为0.4时,在1 A/g的电流密度下测得的比电容为147.37 F/g。对电极进行5000次循环充放电测试,其比容保持率为91.27%。  相似文献   

7.
为提高锂硫电池的循环性能,采用化学沉淀法制备了负载有FeS的介孔碳(MC)复合材料FeS/MC,通过热复合获得了负载S的MC复合材料S/MC和负载S、FeS的MC复合材料S-FeS/MC。FeS/MC的SEM照片表明,FeS可充填MC表面的孔洞。N2吸脱附等温线表明,负载FeS后,MC的比表面积大幅下降,但平均孔径增大。XRD谱图表明,当负载FeS的含量达到20wt%时,出现了Fe3S4晶相。电化学性能测试结果表明:负载于MC中的FeS本身没有电化学活性,但它对多硫离子的氧化还原过程有催化作用,提高了电极的可逆性;S-FeS/MC的二次放电比容量保持率高于S/MC的比容量保持率,表现出较轻的"飞梭效应";S-FeS/MC的二次放电比容量为1 108.8mA·h/g,50次循环容量保持率为43.7%,高于S/MC的容量保持率,表现出较好的循环性能。  相似文献   

8.
新型高比能量磷酸铁锂的制备及电化学性能   总被引:1,自引:0,他引:1  
采用沉淀法制备了高比能量的LiFePO4/C及纯相LiFePO4正极材料,并用XRD、SEM、傅立叶红外光谱仪、程控充放电仪等对样品的结构和电化学性能进行了测试分析.结果表明,样品具有单一的橄榄石结构和良好的充放电平台,掺碳的LiFePO4具有更优良的性能,粒度较小,粒径分布均匀,振实密度达1.46g/cm3,0.1C首次放电比容量为144.6mAh/g,循环20次后容量保持率为93.2%.  相似文献   

9.
采用阳极氧化铝模板(AAO),通过溶胶-凝胶法制备出磷酸铁锂(LiFePO_4)纳米线阵列。场发射扫描电镜(FESEM)和透射电镜(TEM)表征均说明制得的LiFePO_4阵列是分散均匀且相互平行的。X射线衍射(XRD)和能谱图(EDS)表征均说明LiFePO_4纳米线是纯相橄榄石型结构。电化学性能测试表明纳米线阵列具有较好的循环稳定性,1C电流密度下循环100次后容量几乎不衰减,容量保持率为99.1%,10C电流密度下循环350次后容量保持率为91.6%。纳米线阵列的倍率性能较同等条件下制备的纳米粉体有较大提升,0.1C、10C电流密度下容量可分别达156.4mAh/g、106.9mAh/g。  相似文献   

10.
利用共沉淀法制备了铜掺杂的磷酸铁锂正极材料。对产物进行了XRD、SEM、FT-IR、DSC表征分析。结果表明Cu掺杂的LiFePO4具有与LiFePO4相同的单一橄榄石型晶体结构,样品粒径在0.4~20μm左右,形貌规整,粒径分布均匀。0.2C倍率下LiFePO4/C的充放电比容量达到142和144mAh/g,而LiCuxFe1-xPO4/C在充放电的比容量分别为150.1和151mAh/g。LiCuFePO4/C循环40圈后比容量保持率为97.8%,而LiFePO4/C的保持率仅为82.1%。  相似文献   

11.
采用一步溶剂热法合成球形LiFePO4,并进一步在饱和葡萄糖溶液中浸泡包碳形成表面多孔球形LiFePO4/C.利用XRD、SEM、HRTEM、FTIR和BET对样品的纯度、成分、晶型、形貌和孔结构进行了表征.实验结果表明:表面多孔结构使表面多孔球形LiFePO4/C拥有更大的比表面积以及更多的活性位点,并极大缩短了锂离子在充放电过程中的迁移距离,降低锂离子在材料中扩散及脱嵌阻力;在保持较高振实密度(1.36 g·cm-3)的前提下进一步提高材料的利用率以及较大倍率下的充放电性能,使表面多孔球形LiFePO4/C拥有优良的电化学性能.  相似文献   

12.
使用还原铁粉作为铁源, 通过超细球磨与喷雾干燥、高温煅烧技术制备了球形微纳米LiFePO4/C复合材料。使用DSC/TG以及XRD对LiFePO4/C复合材料的形成过程进行了分析; 使用SEM、穆斯堡谱仪等手段对复合材料进行分析; 使用电化学工作站、容量测试仪对其充放电行为进行分析。研究发现, 使用该合成技术路线, 在500~700℃下能够合成LiFePO4/C复合材料。获得的LiFePO4/C复合材料具有规则的球形外貌, 平均尺寸4~5 μm。该微米颗粒由200 nm左右细小颗粒组成, 颗粒间具有纳米尺寸微孔。穆斯堡谱仪测试结果表明, 复合材料中Fe处于+2价的价态。复合材料在1C倍率下表现出稳定的充放电行为, 平均比容量在156 mAh/g, 300次循环后, 容量保持率为92.8%。该技术制备的LiFePO4/C复合材料具有潜在的应用价值。  相似文献   

13.
以SBA-15( SiO2)有序介孔模板为前驱体, 通过镁热还原和碳包覆修饰路线, 制备出二维定向组装的束捆状有序介孔覆碳纳米组织(OMP-Si/C), 并细致研究了SBA-15的镁热还原过程, 对OMP-Si/C复合结构进行电化学性能测试。经XRD测试分析发现: 镁热还原过程中存在Mg2Si中间相反应路径, 基于此提出反应温度-时间(T-t)相转变图; DSC/TG表明, Mg相通过反应-熔化协调联动作用, 在低于熔点(648℃)时熔化, 且发生液/固反应。从FE-SEM观察到SBA-15柱状单元被装配成类藕根链束捆状Si有序介孔组织, 并基于镁液微涡流场卷吸作用机理解释了该二维定向组装过程。所得致密纳米组织能有效抵消充放电过程中Si相的固有体积变化, 从而表现出优异的循环稳定性能和倍率性能。  相似文献   

14.
15.
LiFe(PO4)1–x F x /C was successfully composited using a mechanical activation-carbon thermal reduction process using LiF as the doped fluoride source, and x was 0.01, 0.02, 0.03, 0.04. In this article, material testing used scanning electron microscopy, X-ray crystal diffraction analysis, specific surface area analysis, cyclic voltammograms, and the ac impedance test. The results showed that when x = 0.03, LiFe(PO4)0.97F0.03/C material showed good capability in regard to charge and discharge, and cycle performance was good. The specific surface area was 84.27 m2/g, which was created by the mechanical activation-carbon thermal reduction process. The initial discharge of LiFePO4 synthesized under such conditions was 153.278 mA h/g (0.1C and 2.5–4.2 V). Compared with less doped LiFePO4/C material, the discharge-specific capacity of the material was 127.351 mA h/g under the same conditions. This increases by 20.34% for the initial time cycle, and after 20 circulations, the capacity was 151.512 mA h/g.  相似文献   

16.
采用喷雾干燥法制备出中孔炭微球(MCMSs), 进一步通过液相浸渍得到磁性Fe3O4/MCMSs纳米复合材料, 系统研究了复合材料的形貌结构和吸波性能。结果发现, Fe3O4/MCMSs复合材料具有优异的流动性和低密度(0.24~0.33 g/cm3)特征, 其中Fe3O4纳米颗粒高度分散在MCMSs中孔孔道内。复合材料具有较高的比表面积(548~735 m2/g), 可以促进多种介电弛豫的形成。在2~18 GHz范围内, 复合材料以介电损耗为主, 在12.6 GHz处具有最大反射率-25 dB, 小于-10 dB的带宽达4.7 GHz。复合材料优异的吸波性能可以归因于均相分布的Fe3O4纳米颗粒和中孔炭微球的协同作用, 在增大界面弛豫和电磁波散射的同时, 改善了阻抗匹配, 减少了电磁波在吸波层表面的反射。  相似文献   

17.
球形化是正极材料LiFePO4的重要研究方向.采用喷雾干燥。碳热还原法制备了具有多孔结构的LiFePO4/C球形粉体材料。结果表明:在550-800℃合成的样品均为橄榄石结构LiFePO4/C,晶格常数c/a随着温度的升高而减小,800℃下热处理12h制备的多孔球形LiFePO4/C粉体材料,晶格常数c/a=0.7806,平均粒径在100m左右,每个微球都有直径在200-700nm之间的亚微米颗粒堆积而成,具有流动性好、表面易涂覆等特点,在室温下,C/3首次放电比容量可达119mAh/g。  相似文献   

18.
通过新型喷雾干燥技术及热处理制备出具有球形二次形貌结构的纳米LiFePO4/C复合材料。首先合成了纳米FePO4颗粒(约20nm),并与Li2CO3和一定量的蔗糖均匀混合,对材料前驱体进行碳包覆,通过喷雾干燥获得了前驱体二次颗粒;经过热处理获得了由一次颗粒组成的二次颗粒。详细研究了碳含量对一次颗粒粒径及复合材料性能及形貌的影响,发现当LiFePO4/C复合材料中碳含量为5.3%(质量分数),样品拥有良好的形貌结构和最佳的性能,0.1,1和5C下的比容量分别为162,145和116mAh/g。  相似文献   

19.
用碳热还原法制备LiFePO4/C复合正极材料   总被引:2,自引:0,他引:2  
以Fe2O3为铁源,以葡萄糖为碳添加剂,利用碳热还原法成功地制备了LiFePO4/C复合材料.研究了不同焙烧温度对样品性能的影响.利用X射线衍射仪、扫描电镜和碳硫(质量分数)分析方法对所得样品的晶体结构、表面形貌、含碳量进行分析研究.研究结果表明,样品中碳含量(质量分数)为10%的LiFePO4/C复合材料为单一的橄榄石型晶体结构, 碳的加入使LiFePO4 颗粒粒径减小.碳分散于晶体颗粒之间,增强了颗粒之间的导电性.电化学性能测试结果表明,LiFePO4/C充放电性能和循环性能都得到显著改善.其中,碳含量为10%在700℃下焙烧8h合成出的样品电化学性能最佳,在0.1、0.5和1C倍率下放电,LiFePO4/C首次放电比容量达159.3、137.0、130.6mAh/g,充放电循环30次,容量只衰减了2.2%、5.3%、7.6%.其表现出良好的循环性能.  相似文献   

20.
以酸化的Li2CO3为锂源,由水热法制得了部分外貌呈三维空间网状的LiFePO4/C纳米颗粒,在0.5C放电倍率下的最高放电比容量为143.4mAh/g,经100次循环后无衰减。用化学脱锂法制备了Li1-xFePO4(x=0、0.3、0.5、0.8、1)。用XRD和交流阻抗法对Li1-xFePO4进行了表征。研究表明,随着锂离子的脱出,存在LiFePO4/FePO4两相可逆变化,正负极表面阻抗的变化趋势是先增大后减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号