首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
魏纲  陈春来 《工业建筑》2012,42(1):117-122
采用三维MIDAS/GTS软件,考虑建筑物-土体-隧道共同作用,模拟了双圆盾构隧道垂直穿越墙下筏基砌体结构建筑物的工况,研究隧道施工引起的建筑物附加沉降及荷载,考虑隧道水平位置及墙体层数改变的影响。分析结果表明:随着双圆盾构机穿越建筑物,建筑物的沉降量逐渐增大,完全通过以后建筑物沉降趋于稳定并略有回弹;沿隧道掘进方向的建筑物产生短期不均匀沉降,先从零逐渐增大,随后逐渐减小并趋于零;构件第一主应力最大值σ1和墙体最大剪应变均逐渐增大并趋于稳定。随着隧道轴线与建筑物轴线水平距离从零开始增大,建筑物呈现向隧道一侧倾倒的趋势,基础局部倾斜先增大、后减小;在一定范围内,σ1最大值和最大剪应变基本保持不变,超出后逐渐减小,并接近初始值。随着建筑物层数的增加,墙体最大剪应变呈线性增长,对建筑物造成轻微的损害。  相似文献   

2.
魏纲  洪子涵  孙樵 《市政技术》2019,(2):127-130
采用MIDAS/NX软件建立三维有限元模型,研究了类矩形盾构施工对短桩基础框架建筑物的影响。分析了隧道水平位置和土质条件的改变对邻近建筑物沉降的影响以及隧道开挖过程中建筑物的受力及变形规律。研究结果表明:当建筑物中轴线到隧道中轴线的水平距离L=0 m时,随着隧道的开挖,建筑物的沉降逐渐增大且呈正态分布,建筑物最大第1主应力P_1和最大剪应变E_max整体上呈增大趋势,L的改变对建筑物的沉降影响较大;随着L的增大,P_1和E_max总体上呈减小趋势,建筑物产生向隧道一侧的倾斜,到一定距离后建筑物几乎不受影响;土质条件的改变对建筑物的沉降影响较大。  相似文献   

3.
《低温建筑技术》2016,(7):115-117
以徐州轨道交通3号线穿越某框架建筑物为工程背景,运用MIDAS/GTS数值计算等方法揭示地铁隧道施工过程中地表的沉降规律及隧道以不同穿越角度时建筑物基础的沉降规律。计算结果表明隧道盾构施工引起的地表不均匀沉降差值较大;不同角度穿越地表建筑时,基础沉降分布形态由对称分布逐渐转向单侧倾斜,横向相邻柱的基础沉降差变化较小,纵向相邻柱的基础沉降差迅速增大,隧道中线附近的柱为最不利位置,计算结果可供类似选线工程借鉴。  相似文献   

4.
以某砖混结构居民楼为研究对象,把基础和上部结构看作一个有机的整体,按照建筑物-土体-隧道共同作用进行分析。采用ANSYS软件建立了三维有限元模型,研究计算了盾构隧道施工对地层沉降以及建筑物的沉降、水平变形和应力等的影响。分析表明,建筑物的存在改变了隧道周围土体位移场的分布;建筑物纵向中轴线的沉降曲线基本符合正态分布;其不同楼层的水平变形特征差异较大,纵向中轴线的Z向位移曲线和X向位移曲线都不具有对称性;隧道通过后,建筑物的最大主拉应力尚未超过砌体的抗拉强度平均值,可不采取措施减小其附加变形与应力。  相似文献   

5.
依托天津地铁1号线延长线盾构直接穿越双林站-李楼站区间风机房工程为背景,利用有限元分析软件ABAQUS对其盾构穿越过程进行三维流-固耦合模拟,并与现场监测结果进行对比研究。结果表明:各地下管线沉降的监测值与模拟值基本吻合,有限元模拟过程基本符合实测规律;各管线沉降曲线近似为正态分布曲线,变形主要集中在隧道中轴线附近3倍隧道外径范围内;对于小净距隧道开挖,各管线的最大沉降位置在两隧道中轴线中点附近且略靠近右线隧道处;部分临时回填情况下地连墙的水平位移和洞口附近超孔压变化幅度均略大于全部回填的,而不回填时要明显大于前两者的变化幅度,相对而言,部分临时回填较为经济合理。研究成果将为以后小净距隧道盾构穿越风机房过程的设计施工提供很好的参考价值。  相似文献   

6.
文章以合肥地铁2号线盾构穿越五里墩立交桥群桩为研究背景,分析双线隧道盾构掘进间隔距离对地表沉降与群桩桩基的影响。研究表明:盾构掘进引起的地表沉降呈现"W"型,先行掘进施工所引起的地表沉降较大,且最大沉降点逐渐向后偏移;随着间隔距离的增大,处于两隧道之间的桩基竖向位移逐渐减小,水平位移略有增大,先行隧道中心沉降数值比后行隧道所产生的沉降大6%~17%,当隧道间隔距离大于6倍隧道直径时,地表沉降和桩基变形趋于稳定。  相似文献   

7.
高伟  许英姿  宋风超 《山西建筑》2011,37(21):152-153
采用解析法研究穿越地表建筑物浅埋隧道开挖对地表沉降的影响,推导出了穿越地表建筑物浅埋隧道施工引起的地表沉降公式,依托广州地铁五号线右线区庄区间隧道穿越地表建筑物工程实例,验证了此方法的可行性,可为类似穿越已有建筑物隧道工程提供一定指导。  相似文献   

8.
依托盾构隧道近接侧穿群桩工程建立三维数值分析模型,土体采用小应变硬化(HSS)模型,参数取值借鉴已有研究成果并根据监测位移数据反演,同时考虑土体开挖、衬砌拼装以及盾尾同步注浆等一系列施工工艺措施,并将模拟结果与监测数据进行对比验证,研究了不同工况下地表沉降的形态分布、群桩桩基变形及基桩结构受力,同时考虑地表位移对等代层厚度的敏感性。结果表明:HSS模型能有效预测隧道近接侧穿高架桥桩引起的变形,模拟结果与监测值较吻合; 隧道开挖引起土相对桩产生了滑移,地表沉降及桩身竖向位移在中心线前后各1D(D为管片外径)范围内随推进步数的增加而不断增大,且增加幅度明显减小; 两线推进地表沉降具有叠加效应,最大沉降量增幅达76.8%; 隧道与基桩水平距离越近,引起基桩沉降变化越大,两线推进基桩桩顶沉降增幅达134%; 群桩中各排桩的水平位移变化趋势基本相同,且同排桩的水平位移值相差不大,由于群桩遮挡效应,水平位移值由大到小依次为前排桩、中排桩、后排桩; 桩身水平位移主要在盾构中轴线2.5D范围内,桩身最大水平位移均出现在隧道中轴线附近; 群桩中同排桩桩身附加弯矩及附加轴力沿桩身分布规律相同,桩身最终附加受力与其距离隧道远近有关; 随着注浆充率β的增大,等代层厚度及地表沉降呈线性减小; 穿越段采取的施工工艺方案是有效的,经估算附加弯矩及轴力对桩基承载力的影响在容许范围内。  相似文献   

9.
文章通过对长沙地铁二号线梅溪湖东站~望城坡站区间隧道穿越和近接通过的12栋房屋沉降监测结果的分析,12栋房屋的沉降值和倾斜均未超过控制基准,房屋8号楼的最大沉降速率为-8.10mm/d,大于控制基准,应采取措施。房屋4号楼、7号楼、8号楼出现较大沉降主要是由于右线隧道开挖引起的。盾构施工过程中采取的措施对于控制建筑物沉降是可行的。  相似文献   

10.
隧道下穿既有高大建筑物越来越多的出现在城市地铁建设中,有必要对建筑物受地铁隧道下穿影响发生变形的规律进行研究。采用FLAC3D软件,考虑建筑物–土体–隧道共同作用,模拟了双线暗挖隧道先后穿越独立基础框架结构建筑物的工况。模拟结果表明框架结构的存在对隧道开挖引发的沉降位移曲线形状有明显影响,沉降槽深度明显减小,宽度有所增加。在垂直于隧道方向,上部结构的存在减小了柱间沉降差,使框架结构柱间基础沉降趋于平缓。最终柱间沉降差较大值出现在沉降槽曲线拐点两侧框架柱间。在平行于隧道方向,建筑物柱间沉降差与隧道掌子面位置密切相关,掌子面位置前后两柱间沉降差较大。隧道通过后,该方向上最终柱间沉降差将很小。  相似文献   

11.
广州地铁五号线员科区间隧道采用盾构法施工,员村站东端隧道两侧建筑物较多,盾构机掘进前需要对区间隧道上方的建筑物进行加固处理,根据建筑物的基础型式选择了袖阀管注浆加固,并提出在盾构机通过建筑物时为减少建筑物内部的差异沉降,根据现场实时监测结果及时对建筑物注入双液浆进行加固,以确保建筑物的沉降差在控制范围内。  相似文献   

12.
地铁盾构侧穿高速桥桩基的影响分析   总被引:1,自引:0,他引:1  
庞青山  吴勇 《低温建筑技术》2017,(12):146-148,152
以佛山地铁莲塘~张槎盾构区间侧穿佛开高速桥施工为工程依托,运用MIDAS/GTS有限元程序模拟盾构开挖的全过程,采用不加固和袖阀管注浆加固两种施工工况,分析不同工况下盾构施工对地表沉降和桥梁桩基的差异沉降,结果表明,地层受盾构施工的影响范围都逐步扩展,地表沉降曲线符合Peck沉降槽规律,袖阀管注浆加固后地表沉降量减小约为4mm,桥梁桩基差异沉降减小1.3mm。  相似文献   

13.
软土地区地铁盾构区间隧道近接桩基数值分析   总被引:6,自引:1,他引:5  
拟建的上海市轨道交通11号线区间盾构隧道近距离下穿交大海洋重点工程实验室群桩基础。通过采用莫尔-库仑弹塑性屈服准则,建立有限元数值模型。依据数值模拟结果,先施工左侧隧道与先施工右侧隧道对于桩基础的沉降影响不大;在右侧隧道施工后,隧道埋深处桩体的竖直应力变化最大,最大值为367 kPa,桩体水平应力在与隧道同一深度处变化较大,最大值为9.6 kPa;单桩的最大差异沉降为6.8 mm,按照桩基设计规范,不需要采取加固措施减便可确保建筑物基础的安全可靠;地表的最大沉降值为18.6 mm;由于双线隧道的运营导致的地面附加沉降为1.5 mm。  相似文献   

14.
新建地铁盾构隧道穿越施工,容易导致被穿越运营隧道的不均匀沉降变形,从而引起道床与管片脱开、隧道纵缝张开、隧道渗漏水等情况。运营隧道的过大差异沉降,如不及时控制,任其发展,将严重影响地铁的运营安全。通过上海轨道交通2号线区间隧道由于新建11号线盾构施工引起的差异沉降注浆控制研究,探讨软土地区地铁隧道结构沉降变形的控制措施,对其施工措施和注浆效果的进一步分析总结,可以为今后其他线路区间隧道结构整治提供参考。  相似文献   

15.
吴海峰  魏纲 《城市勘测》2015,(6):158-161
盾构法隧道施工会对周围土体产生扰动,进而引起地面沉降,导致邻近建筑物倾斜、开裂乃至坍塌等一系列问题. 对于如杭州这样的建筑方位不规整城市,在地铁施工中经常会遇到隧道以一定角度从建筑物下方或邻近穿越的工况,将引起建筑物的永久性扭曲变形[1] ,产生较大危害. 本文采用三维MIDAS/GTS软件,模拟盾构隧道以0°、22.5 °、45 °、67.5 °、90 °穿越引起的建筑物附加沉降及墙体受力,分析盾构不同角度穿越砌体结构房屋规律.  相似文献   

16.
地铁盾构隧道下穿建筑基础诱发地层变形研究   总被引:11,自引:2,他引:11  
城市繁华地区地铁盾构隧道施工常需从建筑基础下穿越,如何确保上部建筑与隧道结构安全是施工中的难题。基于沉降预测理论及FLAC3D进行了地铁施工诱发地层环境损伤评估与控制设计STEAD系统的开发,以广州地铁区间隧道下穿某7层框架结构建筑为例,采用数值模拟研究了地铁盾构隧道穿越建筑基础诱发地层变形的空间效应问题,考虑了不同工况下隧道施工引起地层沉降对该建筑物的影响,采用本研究建议,盾构隧道成功穿越该建筑物,实测证实了变形空间效应研究的科学性与有效性。  相似文献   

17.
盾构法施工地铁隧道近距离侧穿高速公路桥梁桩基时,引起地层移动和应力调整,导致桩基位移和内力发生变化,给上部结构带来安全隐患。以杭州地铁3号线工大站—留和站盾构区间双线施工为依托,运用三维有限元软件模拟盾构开挖施工的全过程,研究开挖过程对地层沉降及邻近桥梁桩基影响规律。结果表明,先行隧道开挖导致地表形成沉降槽,后行隧道开挖沉降曲线向后行线扩展;桩基竖向呈现刚体位移,单线开挖时在横向(Y方向)上嵌入土体桩基上半部分向隧道内倾移,下半部分背离隧道方向倾移,在纵向(X方向)上桩基呈现拱形弯曲,双线开挖时桩基横向位移发生反向叠加效应,导致最终横向位移基本接近初始状态,纵向上弯曲位移发生正向叠加效应;双线隧道先后开挖使桩基产生附加摩阻力和附加轴力,在隧道顶面分界线以上桩基总侧摩阻力较初始状态不断减小,分界线以下增加,位于-2.5 m以上桩基轴力较初始状态减小,以下增加;单线开挖时桩基弯矩变化明显,双线开挖弯矩出现反向叠加效果,基本保持初始状态。  相似文献   

18.
基坑施工不可避免会对邻近的盾构隧道沉降产生影响,进而影响盾构隧道结构健康。如何选择合适的方法对隧道沉降监测点数据进行拟合,找出基坑施工参数与盾构隧道沉降趋势之间的内在关系,对快速判别盾构隧道结构性能有重要意义。本文利用三次B样条曲线在连接点处曲率保持一致的独特优势,用该方法对某毗邻型基坑施工期间引起的盾构隧道沉降监测数据进行拟合,在此基础上绘制出施工前后盾构隧道累计沉降的曲率曲线,了解盾构隧道结构的整体受力状态。曲率曲线既能有效地寻找到隧道结构薄弱部位,又能通过与地铁保护区曲率控制标准进行对比,判断隧道结构受力是否超限,为隧道的健康评判提供准确依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号