首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fast breeder reactors based on metal fuel are planned to be in operation for the year beyond 2025 to meet the growing energy demand in India. A road map is laid towards the development of technologies required for launching 1000 MWe commercial metal breeder reactors with closed fuel cycle. Construction of a test reactor with metallic fuel is also envisaged to provide full-scale testing of fuel sub-assemblies planned for a commercial power reactor. Physics design studies have been carried out to arrive at a core configuration for this experimental facility. The aim of this study is to find out minimum power of the core to meet the requirements of safety as well as full-scale demonstration. In addition, fuel sustainability is also a consideration in the design. Two types of metallic fuel pins, viz. a sodium bonded ternary (U-Pu-6% Zr) alloy and a mechanically bonded binary (U-Pu) alloy with 125 μm thickness zirconium liner, are considered for this study. Using the European fast reactor neutronics code system, ERANOS 2.1, four metallic fast reactor cores are optimized and estimated their important steady state parameters. The ABBN-93 system is also used for estimating the important safety parameters. Minimum achievable power from the converter metallic core is 220 MWt. A 320 MWt self-sustaining breeder metal core is recommended for the test facility.  相似文献   

2.
In this work, we performed an evaluation of decay heat power of advanced, fast spectrum, lead and molten salt-cooled reactors, with flexible conversion ratio. The decay heat power was calculated using the BGCore computer code, which explicitly tracks over 1700 isotopes in the fuel throughout its burnup and subsequent decay. In the first stage, the capability of the BGCore code to accurately predict the decay heat power was verified by performing a benchmark calculation for a typical UO2 fuel in a Pressurized Water Reactor environment against the (ANSI/ANS-5.1-2005, “Decay Heat Power in Light Water Reactors,” American National Standard) standard. Very good agreement (within 5%) between the two methods was obtained. Once BGCore calculation capabilities were verified, we calculated decay power for fast reactors with different coolants and conversion ratios, for which no standard procedure is currently available. Notable differences were observed for the decay power of the advanced reactor as compared with the conventional UO2 LWR. The importance of the observed differences was demonstrated by performing a simulation of a Station Blackout transient with the RELAP5 computer code for a lead-cooled fast reactor. The simulation was performed twice: using the code-default ANS-79 decay heat curve and using the curve calculated specifically for the studied core by BGCore code. The differences in the decay heat power resulted in failure to meet maximum cladding temperature limit criteria by ∼100 °C in the latter case, while in the transient simulation with the ANS-79 decay heat curve, all safety limits were satisfied. The results of this study show that the design of new reactor safety systems must be based on decay power curves specific to each individual case in order to assure the desired performance of these systems.  相似文献   

3.
The possibility of an in-pile experimental reactor for fast breeder reactors using a fast driver core is investigated. The driver core is composed of a particle bed with diluted fuel. The results of various basic analyses show that this reactor could perform as follows: (1) power peaking at the outer boundary of test core does not take place for large test core; (2) the radial power distribution in test fuel pin is expected to be the same as a real reactor; (3) the experiments with short half width pulse is possible; (4) for the ordinary MOX core, enough heating-up is possible for core damage experiments; (5) the positive reactivity effects after power burst can be seen directly. These are difficult for conventional thermal in-pile experimental reactors in large power excursion experiments. They are very attractive advantages in the in-pile experiments for fast breeder reactors.  相似文献   

4.
An analysis of the April 26, 1986 accident at the Chernobyl-4 nuclear power plant in the Soviet Union is presented. The peak calculated core power during the accident was 550 000 MWt. The analysis provides insights that further understanding of the plant behavior during the accident. The plant was modeled with the RELAP5/MOD2 computer code using information available in the open literature. RELAP5/MOD2 is an advanced computer code designed for best-estimate thermal-hydraulic analysis of transients in light water reactors. The Chernobyl-4 model included the reactor kinetics effects of fuel temperature, graphite temperature, core average void fraction, and automatic regulator control rod position. Preliminary calculations indicated the effects of recirculation pump coast down during performance of a test at the plant were not sufficient to initiate a reactor kinetics-driven power excursion. Another mechanism, or “trigger” is required. The accident simulation assumed the trigger was recirculation pump performance degradation caused by the onset of pump cavitation. Fuel disintegration caused by the power excursion probably led to rupture of pressure tubes. To further characterize the response of the Chernobyl-4 plant during severe accidents, simulations of an extended station blackout sequence with failure of all feedwater are also presented. For those simulations, RELAP5/MOD2 and SCDAP/MOD1 (an advanced best-estimate computer code for the prediction of reactor core behavior during a severe accident) were used. The simulations indicated that fuel rod melting was delayed significantly because the graphite acted as a heat sink.  相似文献   

5.
Molten salt reactors (MSRs) can be used as effective burners of plutonium (Pu) and minor actinides (MAs) from light water reactor (LWR) spent fuel. In this paper a study was made to examine the thermal hydraulic behaviour of the conceptual design of the molten salt advanced reactor transmuter (MOSART) [Ignatiev, V., Feynberg, O., Myasnikov, A., Zakirov, R., 2003a. Neutronic properties and possible fuel cycle of a molten salt transmuter. Proceedings of the 2003 ANS/ENS International Winter Meeting (GLOBAL 2003), Hyatt Regency, New Orleans, LA, USA 16–20 November 2003]. The molten salt fuel is a ternary NaF–LiF–BeF2 system fuelled with ca. 1 mol% typical compositions of transuranium-trifluorides (PuF3, etc.) from light water reactor spent fuel. The MOSART reactor core does not contain graphite structure elements to guide the flow, so the neutron spectrum is rather hard in order to improve the burning performance. Without those structure elements in the core, the molten salt in core flows freely and the flow pattern could be potentially complicated and may affect significantly the fuel temperature distribution in the core. Therefore, some optimizations of the salt flow pattern may be needed. Here, the main attention has been paid to the fluid dynamic simulations of the MOSART core with the code SIMMER-III [Kondo, Sa., Morita, K., Tobita, Y., Shirakawa, K., 1992. SIMMER-III: an advanced computer program for LMFBR severe accident analysis. Proceedings of the ANP’ 92, Tokyo, Japan; Kondo, Sa., Tobita, Y., Morita, K., Brear, D.J., Kamiyama, K., Yamano, H., Fujita, S., Maschek, W., Fischer, E.A., Kiefhaber, E., Buckel, G., Hesselschwerdt, E., Flad, M., Costa, P., Pigny, S., 1999. Current status and validation of the SIMMER-III LMFR safety analysis code. Proceedings of the ICONE-7, Tokyo, Japan], which was originally developed for the safety assessment of sodium-cooled fast reactors and recently extended by the authors for the thermo-hydraulic and neutronic models so as to describe the molten salt reactors. For the adaptation to molten salt reactor, a complete equation of state (EOS) for this liquid fuel had to be developed and implemented into the SIMMER-III code. Through those simulations it was concluded that the thermal hydraulic behaviour appeared to be very important in molten salt reactors concerning design, operation and safety. A flow distribution plate design was found effective to optimize the flow pattern in the core region. Further investigations are under way to obtain optimal flow fields without exceeding design limits.  相似文献   

6.
Space reactors with fast neutron energy spectrums are preferred for their compactness and high fission power density, but require a high fissile inventory. The operation life estimates of these reactors are important to mission planning. This paper examines a number of fuel depletion and neutronics code packages for determining the operation lives of two space reactors with hard fast neutron energy spectra. These are: the lithium-cooled, Sectored, Compact Reactor (SCoRe-S11), and the submersion subcritical safe space (S^4) reactor, cooled with a He–Xe binary gas mixture (40 g/mol). This work investigated the code packages of Monteburns 2.0, MCNPX 2.6C and TRITON and validated their prediction with fuel depletion data for a PWR fuel bundle, with satisfactory results. The operation life predictions of the two space reactors using these code packages are compared with those calculated using a simplified method that couples MCNP5 to a burnup analysis model using the Simulink® platform. This method considers only the 10 most probable low-Z and high-Z elements of the fission yield peaks plus 149Sm, and neglects the depletion of fission products due to capture and radioactive decay. The simplified method requires significantly shorter running time and its predictions of the operation lives for the two space reactors are within 0.29–12.5% of those obtained using Monteburns 2.0 and MCNPX 2.6C code packages. This method, however, is not recommended for operation life predictions for space or commercial reactors with thermal neutron spectrums.  相似文献   

7.
The cross-section generation scheme employed in the 3D spatial kinetics PARCS code included in the FAST code system being used and developed at the Paul Scherrer Institute (PSI) is currently based on region-wise macroscopic cross-sections for reference conditions and their first-order derivatives with respect to the state variables. Since for some transients, feedback effects may likely not in this way be precisely approximated in their interrelations, this standard method was recently complemented for (hex, z) geometry by a more rigorous cross-section representation scheme. The main idea behind the new approach within the FAST code system is that of preparing sets of microscopic cross-sections for a studied design. The full library consisting of such isotopic tables is generated based on using the ECCO cell code of the code system ERANOS developed by the French Atomic Energy Commission (CEA) for a suitable range of temperatures and background cross-sections (σ0) on a common grid. In the paper, this σ0-model is described. In addition, within a detailed verification study needed due to its complexity, it is extensively compared to the standard method for both steady-state and transient conditions. Thereby use is made of current Generation IV fast-spectrum concepts. Reactivity and power evolution indicate overall good agreement of the two methods. Such a good consistence in various transient situations for systems characterized by different neutron spectra gives a large degree of confidence in the correct implementation and suitability of the microscopic cross-section methodology. Therefore, besides for the safety analysis of advanced fast-spectrum core concepts in general, it is foreseen, within the FAST code system, to use the σ0-model for the assessment of uncertainty propagations in transient calculations in conjunction with the available ERANOS isotopic covariance matrices. The new development makes it also in principle possible to use the PARCS code as a reactor kinetics solver for severe accident analysis, allowing through the use of microscopic cross-sections to account for relocation of the core material during the accident.  相似文献   

8.
Lead–alloy cooled fast reactor is one of the six Gen-IV reactors. It has many attractive features such as excellent natural circulation performance, better shielding against gamma rays or energetic neutrons and potentially reduced capital costs. A natural circulation lead–alloy cooled fast reactor with 10 MWth is under design in China (hereafter called LFR-10MW). Fuel assemblies thermal hydraulic analysis is of vital importance for a successful design. A subchannel analysis code with flow distribution model was used to carry out the thermal hydraulic analysis. This work briefly gave the thermal-hydraulic design for the LFR-10MW and analyzed the thermal-hydraulic characteristics under steady-state condition using the subchannel analysis code. Whole core analysis was performed to locate the hottest fuel assembly using the code. The hottest fuel assembly was analyzed to obtain the cladding temperature, fuel temperature and coolant velocity. The maximum cladding temperature, the maximum fuel center temperature and the maximum coolant velocity are all below the design constraints. These results imply that the thermal-hydraulic design of LFR-10MW is feasible.  相似文献   

9.
基于MCNP和ORIGEN的熔盐快堆燃耗分析计算   总被引:1,自引:1,他引:0  
熔盐堆是6种第4代先进核能系统中唯一使用液态燃料设计的反应堆型,其堆芯一回路中循环流动的熔盐既是燃料,也是冷却剂。这一特征在省去燃料元件加工制造步骤的同时,也使得熔盐堆能进行在线处理和在线添料的操作。因此,传统固态反应堆燃耗分析程序不再适用于熔盐堆。本文以熔盐快堆(MSFR)为分析对象,基于物理分析程序MCORE(MCNP+ORIGEN),将上述熔盐堆特点考虑进去,开发出能进行熔盐堆燃耗分析的MCORE-MS。初步分析表明,233 U-started模式下,熔盐在线处理可有效降低堆芯熔盐中裂变产物的含量,提高中子经济性。MSFR运行过程中能够一直保持负的温度反应性系数。  相似文献   

10.
《Annals of Nuclear Energy》2007,34(1-2):120-129
CANDLE (constant axial shape of neutron flux, nuclide densities and power shape during life of energy producing reactor) burnup strategy is applied to small (30 MWth) block-type high temperature gas-cooled reactors (HTGRs) with thorium fuel. The CANDLE burnup is adopted in this study since it has several promising merits such as simple and safe reactor operation, and the ease of designing a long life reactor core. Burnup performances of thorium fuel (233U, 232Th)O2 are investigated for a range of enrichment ⩽15%. Discharged fuel burnup and burning region motion velocity are major parameters of its performances in this study. The reactors with thorium fuel show a better burnup performance in terms of higher discharged fuel burnup and slower burning region motion velocity (longer core lifetime) compared to the reactors with uranium fuel.  相似文献   

11.
In MTR research reactors, heat removal is, safely performed by forced convection during normal operation and by natural convection after reactor shutdown for residual decay heat removal. However, according to the duration time of operation at full power, it may be required to maintain the forced convection, for a certain period of time after the reactor shutdown. This is among the general requirements for the overall safety engineering features of MTR research reactors to ensure a safe residual heat removal. For instance, in safety analysis of research reactors, initiating events that may challenge the safe removal of residual heat must be identified and analyzed.In the present work, it was assumed a total loss of coolant accident in a typical MTR nuclear research reactor with the objective of examining the core behavior and the occurrence of any fuel damage.For this purpose, the IAEA 10 MW benchmark core, which is a representative of medium power pool type MTR research reactors, was chosen herein in order to investigate the evolution of cladding temperature through the use of a best estimate thermalhydraulic system code RELAP5/mod3.2.  相似文献   

12.
Full core analysis of typical power reactors generally performed uses few group diffusion theory, it is necessary to generate beforehand, using a lattice code, the required few group cross-sections and diffusion coefficients associated with each region in the core.

For the ACR™ (Advanced CANDU Reactor), the problem is more complex because these reactors contain vertical reactivity devices that are located between two horizontal fuel bundles. The usual calculation scheme relies in this case on a 2D fuel cell calculation to generate the few group fuel properties and on a 3D supercell calculation for the analysis of the reactivity devices present in the core. Because of its complexity, the supercell calculations have usually been performed using simplified fuel geometries. The development of new geometry features in DRAGON and the availability of faster computers have made it possible to improve the 2D cell and 3D supercell models by using explicitly 3D assemblies of clusters to simulate the reactivity devices in CANDU reactors, including the ACR. These studies will thus improve the fine reactor core results by generating more accurate and appropriate reactor databases.

In this paper, we will review the lattice-cell/supercell calculation procedure using the code DRAGON by introducing a new supercell model. The use of such an explicit 3D geometry implies a very fine spatial mesh discretization that can generate a large number of regions leading to problems that cannot be solved by the collision probability (CP) method. The method of characteristics (MoC) is then the only alternative for such cases. A comparison of results using these two methods will also be presented for 3D models with a coarse mesh discretization.  相似文献   


13.
Fast breeder nuclear reactors used for power generation, have fuel subassemblies in the form of rod bundles enclosed inside tall hexagonal cavities. Each subassembly can be considered as a porous medium with internal heat generation. A three-dimensional analysis is carried out here to estimate the heat transfer due to natural convection, in such an anisotropic, partially heat generating porous medium, which corresponds to the typical case of blocked flow in a fuel subassembly inside the reactor core. Using the finite volume technique, the temperatures at various locations inside hexagonal cavity are obtained. The simulations by the three-dimensional code developed are compared with the results of experiments [Suresh, Ch.S.Y., Sateesh, G., Das, Sarit K., Venkateshan, S.P., Rajan, M., 2004. Heat transfer from a totally blocked fuel subassembly of a liquid metalfast breeder reactor. Part 1: Experimental investigation. Nucl. Eng. Design, present issue] conducted using liquid sodium as the heat transfer fluid. Further, the code is used to predict the maximum temperature in typical liquid metal fast breeder reactors to find the power level where the liquid sodium starts boiling. It helps to decide the power level for initiation of monitoring the temperature for the purpose of reactor control.  相似文献   

14.
Aqueous homogeneous solution reactor is a promising concept for the production of medical isotopes. But some characteristics of aqueous solution reactors, such as no traditional assembly in the core, the gas bubbles’ generation in fuel solution, isotopes distillation, unstructured geometry, strong anisotropic scattering, etc., make the fuel management calculation very complicated. This study establishes a suitable calculation model for aqueous homogeneous solution reactors and developed an in-core fuel management calculation code FMSR (Fuel Management for Solution Reactors) based on the 3D transport solver DNTR. Numerical results indicate that FMSR can be used for the fuel management calculation of homogeneous aqueous solution reactor as a trial.  相似文献   

15.
《Annals of Nuclear Energy》2005,32(15):1613-1631
One of the main goals of the FAST project at PSI is to establish a unique analytical code capability for the core and safety analysis of advanced critical (and sub-critical) fast-spectrum systems for a wide range of different coolants. Both static and transient core physics, as well as the behaviour and safety of the power plant as a whole, are studied. The paper discusses the structure of the code system, including the organisation of the interfaces and data exchange. Examples of validation and application of the individual programs, as well as of the complete code system, are provided using studies carried out within the context of designs for experimental accelerator-driven, fast-spectrum systems.  相似文献   

16.
In the frame of Partitioning and Transmutation (P&T) strategies, many solutions have been proposed in order to burn transuranics (TRU) discharged from conventional thermal reactors in fast reactor systems. This is due to the favourable feature of neutron fission to capture cross section ratio in a fast neutron spectrum for most TRU. However the majority of studies performed use the Accelerator Driven Systems (ADS), due to their potential flexibility to utilize various fuel types, loaded with significant amounts of TRU having very different Minor Actinides (MA) over Pu ratios. Recently the potential of low conversion ratio critical fast reactors has been rediscovered, with very attractive burning capabilities. In the present paper the burning performances of two systems are directly compared: a sodium cooled critical fast reactor with a low conversion ratio, and the European lead cooled subcritical ADS-EFIT reactor loaded with fertile-free fuel. Comparison is done for characteristics of both the intrinsic core and the regional fuel cycle within a European double-strata scenario. Results of the simulations, obtained by use of French COSI6 code, show comparable performance and confirm that in a double strata fuel cycle the same goals could be achieved by deploying dedicated fast critical or ADS-EFIT type reactors. However the critical fast burner reactor fleet requires ∼30-40% higher installed power then the ADS-EFIT one. Therefore full comparative assessment and ranking can be done only by a parametric sensitivity study of both the fuel cycle and the electricity generating costs.  相似文献   

17.
The irradiation swelling, creep, and thermal-stress analysis of light-water reactor (LWR) oxide (UO2) fuel elements is analysed. The analysis is based on the basic physical and mathematical assumptions and the experimental data of the fuel and cladding (or canning) materials. In the analysis, the nuclear, physical, metallurgical, and thermo-mechanical properties of the fuel and cladding materials under irradiation environment are examined carefully. The objectives of the paper are mainly (1) to formulate and carry out the irradiation swelling, irradiation creep, and thermal-stress analysis of fuel elements for LWR power reactors, and (2) to develop a computer code which will facilitate the computations for fuel element design, safety analysis, and economic optimization of the power reactors. In a general procedure of the analysis, the irradiation swelling, irradiation creep, temperature distribution, etc. in the fuel and cladding of the oxide fuel elements during the reactor in operation are studied. Some theoretical models and empirical relations (on the basis of accepted experimental data) for irradiation swelling and creep in the fuel and irradiation creep in cladding materials are postulated and developed. Some analytical and empirical relations (based on test results) for heat generation and temperature distribution in the fuel during fuel restructuring are derived. The fuel restructure is, in general, divided into the central void, columnar grain, equiaxed grain, and unaffected grain zones (or regions) after a sufficiently long period for the fuel elements to be irradiated (or operated). From these relations derived for irradiation swelling, irradiation creep, and temperature distribution in the fuel and cladding, together with the well-known strain-stress, incompressibility, compatibility, and stress equilibrium equations, the irradiation swelling, creep, and thermal-stress analysis for the LWR fuel elements can be carried out.From the analytical results obtained, a computer code, ISUNE-2 (which is in the sequence of computer code ISUNE-1 and -1A developed and used previously for liquid-metal fast breeder reactor fuel element design and safety and economic analysis), can be developed. With some reliable experimental data (measured during fuel elements in operation) as input, the computer code may predict various cases of LWR (oxide or carbide) fuel elements in operation. The general scope and resulting contribution of this paper is to provide a realistic analysis and a reliable operating LWR fuel element code for use by nuclear power utilities to predict the fuel element behavior in power reactors. The fuel element design, safety analysis, and economic optimization depend largely on the fuel element behavior in the power reactors.  相似文献   

18.
This paper describes the Canadian algorithm for thermal hydraulic network analysis (CATHENA) transient, thermalhydraulics code developed for the analysis of postulated upset conditions in CANDU®1 reactors. The core of a CANDU reactor consists of a large number of horizontal pressure tubes containing fuel bundles. As a result of the unique design of the CANDU reactor, the CATHENA thermalhydraulic code has been developed with a number of unique modelling capabilities. The code uses a one-dimensional, two-fluid, nonequilibrium representation of two-phase flow. Some of the unique features of the CATHENA code are the one-step semi-implicit numerical method used and the solid heat transfer modelling capability that allows horizontal fuel bundles to be represented in detail. The code has been used in the design and analysis of CANDU-3, CANDU-6 and CANDU-9 reactors. The code has also been used for the design and analysis of the multiple applied lattice experimental (MAPLE) class of reactors and for the analysis of thermalhydraulic experimental programs conducted by Atomic Energy of Canada Limited (AECL).  相似文献   

19.
The U.S. Nuclear Regulatory Commission recently identified a possible safety concern for pressurized water reactors. Following the reflood phase of a large break loss-of-coolant accident, long-term cooling of the reactor core may not be ensured. Specifically, the concern is that, for a pump discharge cold leg break, the loop seals in the reactor coolant pump suction piping will refill with liquid and the post-reflood steam production may depress the liquid levels in the downflow sides of the loop seals. A loop seal depression would cause a corresponding depression of the core liquid levels and possibly a fuel rod heatup in the upper core region. This paper is intended as an introduction of the safety issue that: (1) describes the important aspects of the problem, (2) provides an initial analysis of the consequences, and (3) discusses ongoing work in this area. Because the elevation of the loop seals is near the mid-core elevation in plants of Westinghouse design, the concern is greatest for those plants. There is less concern for most plants of Combustion Engineering design, and likely no concern for plants of Babcock and Wilcox design. This issue was addressed by employing both steady-state and transient systems analysis approaches. Two approaches were used because of uncertainties regarding actual reactor coolant system behavior during the post-reflood period. The steady-state approach involved the development and application of a simple computer program to investigate reactor coolant system behavior assuming quiescent post-reflood conditions. The transient systems approach involved investigating this behavior using the RELAP5/MOD2 computer code and a comprehensive RELAP5 model of a Westinghouse pressurized water reactor. The steady-state analysis indicated only a moderate fuel rod heatup is possible. The transient systems analysis indicated boiling and condensation-induced flow oscillations are sufficient to prevent fuel rod heatup. Analysis uncertainties are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号