首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As part of a joint research programme between the Paul Scherrer Institute (PSI) and swissnuclear, with the co-operation of the Leibstadt nuclear power plant in Switzerland and fuel suppliers Westinghouse Sweden, measurements and calculations have been made of the axial and radial distributions of fission and 238U capture rates in the fuel rods of a Westinghouse SVEA-96 Optima2 boiling water reactor assembly. The measurements, made in the zero-energy research reactor PROTEUS at PSI, have been compared with calculations carried out using the Monte Carlo code MCNPX. The results reported are for the regions near the ends of the part-length fuel rods, which are a feature of SVEA-96 Optima2 assemblies. The sudden increase in moderation above the ends of the part-length rods leads to power peaking in the adjacent rods. Careful attention needs to be given to this phenomenon in the deployment of such fuel, the present paper providing experimental evidence for the ability of a stochastic code to predict such effects.  相似文献   

2.
Due to the many problems encountered in the design of fuel rods for the safe operation of commercial nuclear reactors, caused by the fission gases generated by the fission of fissile material, it was considered opportune to make a theoretical analysis of the feasibility of extraction of fission gases from the fuel rod while in operation.This analysis in the steady state of a Zircaloy-2 sheathed fuel rod containing UO2 as a fuel, with a 2 mm (2.7 vol.%) diameter porous graphite cylinder inserted in the centre, has demonstrated that a total volume of fission gases (xenon, krypton, and iodine) of about 1.1 × 10−6 cm3/s (at STP) can be extracted from the fuel rod at a controlled rate, determined by the inherent property of fission gas migration towards the centre of the fuel rod from its place of formation. In this analysis, the fuel rod was assumed to be subjected to irradiation in a reactor the size of a Bruce “A” reactor, operating at 3000 megawatts thermal power. The extracted volume of gas was calculated on a 900 h cycle after the first 90 h of reactor operation had elapsed.  相似文献   

3.
燃料棒束作为压水堆燃料组件的组成部分,其热工和结构特性直接关系到反应堆的安全。本文利用ANSYS WORKBENCH软件分析了冷却剂在5×5含定位格架燃料棒束通道内流动的分布,采用冷却剂与燃料棒束多场耦合的方式研究了燃料棒束的流动传热特性和结构形变特性。结果表明:定位格架扰动冷却剂形成横向二次流并在下游棒束间形成绕流;多场耦合条件下二次流峰值速度和平均速度均小于单流场的;二次流与燃料棒的热应力使棒束发生形变,功率和流动分布的不均匀导致形变在轴向和径向的不均匀;相较于无格架情况,定位格架的存在使冷却剂的搅混流动更加明显,冷却剂对燃料棒冲击增大;在有、无定位格架两种情况下棒束形变均很小,可保持原本结构的稳定。  相似文献   

4.
ABSTRACT

Neutronics analysis was conducted for a proposed megawatt-class gas cooled space nuclear reactor design. The reactor design has a high operating temperature of up to 1500 K. Annular UO2 fuel rods were used to reduce the central temperature of the fuel. The thermal power is 2.3 MWt and is converted into electric power by a direct Brayton cycle. The control rods were arranged in different configurations and were analyzed in order to evaluate the influence on the reactor design in different scenarios. The calculation results reveal that the control rods arrangements have influences on the begin-of-life (BOL) excess reactivity and the shutdown reactivity. The distribution of control rods affects the neutron economy and leakage in the fuel region, consequently affecting the reactivity. It is also known that the reactivity in flooding scenarios are not sensitive to different control rod arrangements. Meanwhile, according to calculation results, the proposed reactor design has enough shutdown reactivity margin which will allow for flexible control strategy. Further analysis is still needed for more detailed and accurate parameters of the reactor design.  相似文献   

5.
A neural network model is under development to predict the local power distribution in a BWR fuel bundle as a high speed simulator of precise nuclear physical analysis model. The relation between 235U enrichment of fuel rods and local peaking factor (LPF) has been learned using a two-layered neural network model ENET. The training signals used were 33 patterns having considered a line symmetry of a 8x8 assembly lattice including 4 water rods.

The ENET model is used in the first stage and a new model GNET which learns the change of LPFs caused by burnable neutron absorber Gadolinia, is added to the ENET in the second stage. Using this two-staged model EGNET, total number of training signals can be decreased to 99. These training signals are for zero-burnup cases. The effect of Gadolinia on LPF has a large nonliniality and the GNET should have three layers. This combined model of EGNET can predict the training signals within 0.02 of LPF error, and the LPF of a high power rod is predictable within 0.03 error for Gadolinia rod distributions different from the training signals when the number of Gadolinia rods is less than 10. The computing speed of EGNET is more than 100 times faster than that of a precise nuclear analysis model, and EGNET is suitable for scoping survey analysis.  相似文献   

6.
破损燃料组件修复后再次入堆使用是必须进行安全评估,以确保核安全。本文以采用AFA3G燃料组件的CPR1000机组为研究对象,对装入反应堆后的正常燃料组件和修复燃料组件的核物理和功率分布进行分析评估。结果表明:燃料组件内更换一根燃料棒对燃料组件反应性的影响很小,该影响可以忽略。更换不锈钢棒的数量越大,燃料组件反应性变化幅度越大。随着燃耗的加深,燃料组件反应性变化幅度也增大。修复的燃料组件虽然在换棒位置局部区域发生功率畸变,相对功率略微的升高,但离换棒位置较远的燃料棒的相对功率没有变化,换棒不会导致组件内功率峰发生象限的偏移。  相似文献   

7.
Abstract

A reactivity control method was proposed for a boiling water reactor (BWR) fuel bundle, which has a potential for higher burnup with an increase in fuel enrichment. The new method optimized the distribution and amount of nonboiling water area in a fuel bundle in order to enhance the reactivity control capacity.

Using the method, a 9×9 lattice fuel bundle with a small-sized channel box, large-sized water rods and a reduced fuel rod diameter was proposed for the discharged burnup of 70 GWd/t and the operational cycle length of 18 months. The core, which consists of the proposed fuel bundles with the bundle-averaged enrichment of 5.8% and includes other modifications concerning a neutron low leakage loading pattern, natural uranium axial blankets, and spectral shift with recirculation flow control, has a cold shutdown margin greater than the design limit (1%Δk) with minimum fuel bundle shuffling. Further, it has potentials for natural uranium savings of about 20% per unit power and reduction in the amount of reprocessing of about 60% per unit power, compared with current BWR designs.  相似文献   

8.
The commercial CFD code STAR-CD v4.02 is used as a numerical simulation tool for flows in the supercritical water-cooled nuclear reactor (SCWR). The basic heat transfer element in the reactor core can be considered as round rods and rod bundles. Reactors with vertical or horizontal flow in the core can be found. In vertically oriented core, symmetric characters of flow and heat transfer can be found and two-dimensional analyses are often performed. However, in horizontally oriented core the flow and heat transfer are fully three-dimensional due to the buoyancy effect. In this paper, horizontal rods and rod bundles at SCWR conditions are studied. Special STAR-CD subroutines were developed by the authors to correctly represent the dramatic change in physical properties of the supercritical water with temperature. In the rod bundle simulations, it is found that the geometry and orientation of the rod bundle have strong effects on the wall temperature distributions and heat transfers. In one orientation the square bundle has a higher wall temperature difference than other bundles. However, when the bundles are rotated by 90° the highest wall temperature difference is found in the hexagon bundle. Similar analysis could be useful in design and safety studies to obtain optimum fuel rod arrangement in a SCWR.  相似文献   

9.
The NSRR programme is in progress in JAERI using a pulsed reactor to investigate fuel behaviors under the reactivity-initiated accident conditions. Pulsing characteristics and experimental capability, especially heat deposition in test fuel rods given by a single pulse are key parameters to this purpose.

In pulsing performance tests, it has been ascertained that the maximum pulsing with 4.67$ (=3.41%δk) brings peak reactor power of 21,100 MW and core energy release of 117 MW·sec. The calculated time responses of reactor power, fuel temperature and cladding surface temperature as well as these maximum values at various pulse sizes agreed well with measured data. In addition, it has been also ascertained by measurement as well as analysis that there are no essential differences in pulsing characteristics between the pulsing from critical and that from subcritical.

The heat deposition in a test fuel rod given by a single pulse is much enough as predicted, and a 2.6% enriched BWR type fuel rod gains about 230cal/g-UO2 in the maximum pulsing. In case of irradiation of clustered five test fuel rods by a single pulse, heat deposition reduces by about 20% for a surrounding rod and about 40% for a center rod in comparison with that in a single rod irradiation.  相似文献   

10.
The convective heat transfer for turbulent flow through rod bundles representative of nuclear fuel rods used in pressurized water reactors is examined. The rod bundles consist of a square array of parallel rods that are held on a constant pitch by support grids spaced axially along the rod bundle. Split-vane pair support grids, which create swirling flow in the rod bundle, as well as disc and standard support grids are investigated. Single-phase convective heat transfer coefficients are measured for flow downstream of support grids in a rod bundle. The rods are heated using direct resistance heating, and a bulk axial flow of air is used to cool the rods in the rod bundle. Air is used as the working fluid instead of water to reduce the power required to heat the rod bundle. Results indicate heat transfer enhancement for up to 10 hydraulic diameters downstream of the support grids. A general correlation is developed to predict the heat transfer development downstream of support grids. In addition, circumferential variations in heat transfer coefficients result in hot streaks that develop on the rods downstream of split-vane pair support grids.  相似文献   

11.
A hydride control rod is being developed to improve the economy of fast reactor plants because it has a longer lifetime than the currently used B4C control rod. A hydride burnable poison rod is also under development to reduce the number of control rods by decreasing core excess reactivity. Hydrogen in the hydride control rod causes neutron spectrum interference between the fuel and control rod regions. Thus, the study on core design was performed with the continuous-energy Monte Carlo code MVP using the nuclear data library JENDL-3.3 to deal with this phenomenon precisely. To evaluate the applicability of MVP to hydride absorber rod design, two benchmark calculations were carried out. One of them is a hydrogen-contained metal fuel fast core constructed in Fast Critical Assembly (FCA) and the other is the Nuclear Safety Research Reactor (NSRR) core where zirconium-hydride fuel (U-ZrH1.6) rods are loaded. These benchmark calculations and the design study on a fast reactor core with hafnium-hydride control rods have revealed that MVP is a reliable tool for hydride absorber rod design.  相似文献   

12.
In a boiling water nuclear reactor (BWR), liquid film dryout may occur on a fuel rod surface when the fuel assembly power exceeds the critical power. The spacers supporting fuel rods affect on the thermal-hydraulic performance of the fuel assembly. The spacer is designed to enhance critical power significantly. If spacer effects for two-phase flow could be estimated analytically, the cost and time for the development of the advanced BWR fuel would be certainly decreased. The final goal of this study is to be able to analytically predict the critical power of a new BWR fuel assembly without any thermal-hydraulic tests. Initially, we developed the finite element code to estimate spacer effects on the droplet deposition. Then, using the developed code, the spacer effects were estimated for various spacer geometries in a plane channel and one subchannel of BWR fuel bundle. The estimated results of the spacer effects showed a possibility to analytically predict the critical power of a BWR fuel assembly.  相似文献   

13.
A Super Fast Reactor is a pressure-vessel type, fast spectrum supercritical water-cooled reactor (SCWR) that is presently researched in a Japanese project. A preliminary core has been designed with 1.59E+06 W/m3 of power density [1]. In order to ensure the fuel rod integrity, the fuel rod behaviors under the normal operating conditions are analyzed using FEMAXI-6 code. Three types of the limiting fuel rods, with the maximum cladding surface temperature (MCST), maximum power peak (MPP) and maximum discharge burnup (MDB), are chosen to cover all the fuel rods in the core. The power histories of these fuel rods are taken from the neutronics calculation results in the core design. The available design range of the fuel rod design parameters, such as the initial gas plenum pressure, gas plenum length, grain size and pellet-cladding gap size, are found out in order to satisfy the following design criteria: (1) Maximum fuel centerline temperature should be less than 1900 °C. (2) Maximum cladding stress in circumstance direction should be less than 100 MPa. (3) Pressure difference on the cladding should be less than 1/3 of buckling collapse pressure. (4) Compressive stress to yield strength ratio should be less than 0.2. (5) Cumulative damage fraction (CDF) on the cladding should be less than 1.0. Finally the improved fuel rod design is proposed.  相似文献   

14.
The supercritical-water-cooled power reactor (SCPR) is expected to reduce power costs compared with those of current LWRs because of its high thermal efficiency and simple reactor system. The high thermal efficiency is obtained by supercritical pressure water cooling. The fuel cladding surface temperature increases locally due to a synergistic effect from the increased coolant temperature, the expanded flow deflection due to coolant density change and the decreased heat transfer coefficient, if the coolant flow distribution is non-uniform in the fuel assembly. Therefore, the SCPR fuel assembly is designed using a subchannel analysis code based on the SILFEED code for BWRs.

The SCPR fuel assembly has many square-shaped water rods. The fuel rods are arranged around these water rods. The fuel rod pitch and diameter are 11.2 mm and 10.2 mm, respectively. Since coolant flow distribution in the fuel assembly strongly depends on the gap width between the fuel rod and the water rod, the proper gap width is examined. Subchannel analysis shows that the coolant flow distribution becomes uniform when the gap width is 1.0 mm. The maximum fuel cladding surface temperature is lower than 600°C and the temperature margin of the fuel cladding is increased in the design.  相似文献   

15.
以CPR1000核电机组使用的格架组装的5×5棒束燃料组件为对象,开展了多组全长棒束燃料组件搅混特性实验,重点分析了冷-热棒布置形式、格架布置形式等几何参数对燃料组件搅混特性的影响规律,实验结果表明,冷-热棒中心对称布置时的燃料组件热扩散系数更接近真值;跨间搅混格架对燃料组件总体热扩散系数有较小增强作用,但对于棒束压降的贡献很低。   相似文献   

16.
The NSRR programme is in progress in JAERI using a pulsed reactor to evaluate the behavior of reactor fuels under reactivity accident conditions. This report describes briefly the experimental results and preliminary analysis of two cluster tests.

In the cluster configuration of five fuel rods, the power distribution in outer fuel rods are not symmetric due to neutron absorption in central fuel rod. The cladding temperature on the exterior boundaries of the cluster is higher than that in interior. Good agreement was obtained between the calculated and measured cladding temperature histories. In the 3.8$ excess reactivity test, cluster averaged energy deposition of 237 cal/g-UO2, cladding melting and deformation were limited to the portions of the fuel rods that were on the exterior boundaries of the cluster.  相似文献   

17.
The 1,000kWe metal fueled sodium-cooled fast reactor concept “RAPID” to achieve highly automated reactor operation has been demonstrated. RAPID (Refueling by All Pins Integrated Design) is designed for a terrestrial power system which enables quick and simplified refueling. It is one of the successors of the RAPID-L, the operator-free fast reactor concept designed for lunar base power system. The essential feature of the RAPID concept is that the reactor core consists of an integrated fuel assembly instead of conventional fuel subassemblies. In this small-size reactor core, 14,000 fuel pins are integrated and encased in a fuel cartridge. Refueling is conducted by replacing a fuel cartridge. The reactor can be operated without refueling for up to 10 years.

Unique challenges in reactivity control systems design have been addressed in the RAPID concept. The reactor has no control rod but involves the following innovative reactivity control systems: lithium expansion modules (LEM) for inherent reactivity feedback, lithium injection modules (LIM) for inherent ultimate shutdown, and lithium release modules (LRM) for automated reactor startup. All these systems adopt 6Li as a liquid poison instead of B4C rods. In combination with LEMs, LIMs and LRMs, RAPID can be operated without an operator. In this paper, the RAPID reactor concept and its transient characteristics are presented.  相似文献   

18.
This paper describes the results of fuel burnup measurements, made over a period of several years on discharged fuel from nuclear power plant and research reactor. The measured and calculated burnup of different spent fuel types, viz.: Natural uranium CANDU fuel bundles; 10.5% enriched booster rods; 20% enriched MTR fuel elements have been presented. High-resolution gamma spectrometry, using 137Cs and 134Cs burnup monitors was employed in different reactors to estimate the amount of 235U depletion in the respective fuel. The experimental data was compared with those of calculations to optimize fuel-scheduling programme. The burnup data is useful for assessment of fuel performance in the core and resolving design issues related to long-term storage facilities. It has been observed that the gamma spectrometry is very effective in identifying exact position of individual booster bundles inside the discharged booster assemblies, which is useful in safeguard applications. It is concluded that the distribution of measured isotopic activity ratios of 134Cs/137Cs along the height of the spent fuel gives accurate estimate of the axial neutron flux profiles in the core. The activity ratio technique therefore provides a useful method to determine flux peaking factors at the particular locations of the fuel assemblies in the reactor.  相似文献   

19.
堆芯是核动力系统的核心部件,其完整性是反应堆安全运行的重要前提。传统核反应堆堆芯热工水力分析方法无法满足未来先进核动力系统的高精度模拟需求。本文依托开源CFD平台OpenFOAM,针对压水堆堆芯棒束结构特点建立了冷却剂流动换热模型、燃料棒导热模型和耦合换热模型,开发了一套基于有限体积法的压水堆全堆芯通道级热工水力特性分析程序CorTAF。选取GE3×3、Weiss和PNL2×6燃料组件流动换热实验开展模型验证,计算结果与实验数据基本符合,表明该程序适用于棒束燃料组件内冷却剂流动换热特性预测。本工作对压水堆堆芯安全分析工具开发具有参考和借鉴意义。  相似文献   

20.
The Doppler limited power excursion characteristics of a light water reactor and the shutdown mechanism by scram were analyzed on the Hitachi Training Reactor (HTR). For the purpose of the pulse operation tests, modifications were applied to the HTR to provide pulsing capability; a pulse rod was added, together with a back up device for shutdown, and provision of three instrumented fuel assemblies, equipped with thermocouples; the Al-clad fuel rods were replaced by stainless steel clad rods.

About 100 runs of pulse operation tests were performed in fullest security with reactivity insertions ranging up to 1.0 % Δk/k, in which last case the peak power reached 38 MW, with a reactor period of 29 msec.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号