首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
A new type of ultra-wideband (UWB) antenna with a dual-notched frequency band, compact size of 21?×?28?mm2 and a coplanar waveguide (CPW) fed is proposed in this article. Two notched frequency bands are obtained by embedding two U-shaped slots in the radiation patch and a rectangle slot in the ground plane, which can be controlled by adjusting the length of the responding slots. The frequency domain characteristics are investigated and measured. Both the experimental and numerical results show that the proposed antenna has an impedance bandwidth ranging from 3.1?GHz to more than 11.0?GHz in which voltage standing wave ratio is less than 2, expect two notch frequency band, 5–6?GHz (WLAN) and 7.7–8.5?GHz (X-band for satellite communications in China).  相似文献   

2.
为了滤除WIMAX(3.3~3.8 GHz)和WLAN(5.125~5.825 GHz)窄带信号对超宽带系统的干扰,该文提出一款共面波导馈电的小型化双陷波渐变槽天线。共面波导结构可以有效地扩展天线的带宽,实现对整个UWB(3.1~10.6 GHz)频段的全覆盖。通过在天线的馈线上开L型缝隙和在辐射贴片上开一对E字型缝隙的方法,有效实现了在3.15~3.97 GHz和4.94~6.05 GHz频段的双陷波特性,能够抑制WIMAX和WLAN对超宽带系统的干扰。该天线结构简单紧凑,尺寸非常小,仅为40 mm×18 mm×0.813 mm。仿真和实测结果表明该天线在超宽带波段内具有良好的陷波特性、增益特性,可以应用于小型化超宽带系统中。文中方法对于陷波渐变槽天线的研究具有一定的借鉴意义。  相似文献   

3.
A dual symmetrical coplanar waveguide (CPW)-fed small size wideband printed square slot antenna (SSA) with dual linearly and circularly polarized radiation capability is presented. The antenna is composed using a square slot, two symmetrical orthogonal CPW feed lines connected to horizontal and vertical arm of L-shaped radiator, an embedded parasitic inverted-L strip at the lower left corner of the square ground slot and engraving slots in the ground plane. Circular polarization (CP) is achieved due to two orthogonal CPW feed lines and a common L-shaped radiator. Isolation between ports is improved by engraving slots at the lower left corner of ground plane and embedded parasitic inverted-L strip. The sense of dual-polarization can be changed in pass-band by changing the port excitation. Measured antenna reveals that an 84.4% (4.6 GHz, 3.15–7.75 GHz) −10 dB impedance bandwidth (IBW) and about 33% (2.03 GHz, 5.12–7.15 GHz) 3-dB axial ratio bandwidth (ARBW). Isolation between ports <−16 dB is achieved over usable CP band.  相似文献   

4.
设计了一款具有三阻带特性的紧凑型超宽带天线。该天线采用共面波导结构进行馈电且能覆盖3.05~11.05 GHz的频率范围。通过在地表面加载两个对称的L形槽可以滤除WiMAX和卫星通信系统对超宽带系统的干扰,同时5.15~5.25 GHz和5.725~5.825 GHz的WLAN系统对超宽带系统的干扰分别被加载在辐射贴片上的倒C形和馈线上的倒U形槽滤除。天线经过设计,优化和制作,并对其进行了测试。测试结果表明,该天线尺寸为23mm×30 mm,其在3.05~11.05 GHz内VSWR小于2,并在3.30~4.16,5.0~5.4和5.6~6.0 GHz处形成了三个阻带。  相似文献   

5.
一种双陷波超宽带天线设计与研究   总被引:2,自引:0,他引:2  
为了避免如WiMax和WLAN等窄带通信系统对超宽带通信系统的影响,该文提出一种具有双陷波特性的超宽带天线。该天线采用圆形贴片作为辐射单元,通过在贴片和接地板上分别开圆弧状的H形槽和L形槽来实现双陷波特性。天线在3.1~10.6 GHz的超宽带频段内能够有效地工作并抑制两种不同的窄带通信系统的干扰。同时圆弧状H形槽的参数研究表明,这种开槽结构能够以槽参数组合的形式更有效地控制陷波中心频率。实测和仿真结果吻合,该天线实现了良好的陷波功能,在工作频段内有良好的辐射方向特性。  相似文献   

6.

A compact rectangular microstrip-fed Ultra Wideband patch antenna with double band notched feature at Wi-Max and WLAN is offered in this paper. The designed antenna is composed of an ordinary rectangular patch antenna with a partially defective ground structure. For achieving dual notch characteristics a ‘U’ and ‘Reversed U’ slots are embedded in the radiating patch. The partial ground plane structure with U shaped slot in the middle is incorporated for achieving additional resonance and bandwidth enhancement. The proposed antenna has a measurement of 20 × 33 × 1.6 mm3. First notch created by U shaped slot at frequency 3.5 GHz is for Wi-Max (from 2.9 to 4.5 GHz) and Second notch which is generated by Reversed U shaped slots at frequency 5.4 GHz is for WLAN (from 5.49 to 6.45 GHz). The antenna covers almost complete range of Ultra Wideband (3.1–10.6 GHz). The Simulation analysis of the proposed antenna is carried out using CST-2011 simulation software. The radiation pattern of the simulated antenna is near Omnidirectional and the Gain of proposed antenna is almost stable over the range of UWB excluding notch bands.

  相似文献   

7.
一种新型的具有带阻特性的超宽带微带天线   总被引:1,自引:1,他引:0  
设计制作了一种新型的具有带阻特性的超宽带微带天线。天线采用50Ω共面波导馈电结构,辐射单元采用圆形金属贴片,在圆形贴片上开一个倒U形槽,实现了天线的带阻特性。测试结果表明:在频率段2.8-12.0 GHz内(除5.00-5.95 GHz外)天线驻波比小于2,且天线具有近似全向辐射的特性;而天线在频率段5.00-5.95 GHz内形成了阻带,从而有效阻隔了WLAN(5.150-5.825 GHz)频率段。该天线具有尺寸小,易于与微波电路集成等优点,可以用于超宽带系统。  相似文献   

8.
In this paper, a compact coplanar waveguide (CPW) fed ultra-wide band (UWB) multi input multi output (MIMO) antenna is proposed. The antenna consists of two antiparallel hexagonal ring monopole elements. Circular arcs shaped grounded stubs are used to enhance the isolation, both the arcs are connected through stub to make common ground. Tapering of the slots of CPW feed line at feed point, and grounded slots are introduced for impedance matching over UWB. The proposed antenna is fabricated and impedance bandwidth, isolation, radiation pattern, and gain are measured. Moreover, envelop correlation coefficient (ECC) results are given. Proposed antenna structure operates in the frequency range 3–12 GHz with a fractional bandwidth of 120% keeping isolation better than 15 dB. The antenna has a compact size of 45 × 25 mm2.  相似文献   

9.
A Y-shaped ultra-wideband (UWB) monopole antenna containing modified ground plane with five stop bands is presented. An inverted U-shaped slot and a C-shaped slot are placed on Y-shaped radiating patch to achieve two notched bands while three pairs of C-shaped slots are placed at different positions on modified ground plane to achieve three more notched bands. The proposed antenna is designed, fabricated and experimentally tested. The designed Y-shaped antenna has overall dimensions of 36 × 38 × 1.6 mm3 (0.34λl × 0.36 λl × 0.016 λl) and has impedance bandwidth 2.86–13.3 GHz at |S11| < −10 dB level. Measured band notches are achieved at 3.75/5.43/7.87/8.62/9.87 GHz centre notched frequencies to eliminate worldwide interoperability for microwave access (WiMAX) band (3.45–4.0 GHz), wireless local area network (WLAN) band (5.15–5.90 GHz), X-band for satellite communication (6.77–8.00 GHz), ITU-8 band (8.3–9.1 GHz), and radio navigation (RN) band (9.3–10.6 GHz), respectively. Variation of slot parameter on individual band notch is also investigated. Omnidirectional radiation pattern for XZ-plane and dipole-like radiation pattern for YZ-plane are observed. Stable gain, variation of phase response in linear fashion and group delay <1.3 ns for whole ultra-wideband except at band notches is achieved.  相似文献   

10.
In this paper, we propose the design of coplanar waveguide (CPW) ultra-wideband (UWB) dual notched band monopole antenna with a π-shaped slot and EBG is proposed. The designed antenna produces an impedance bandwidth of 2.7–11.7 GHz (VSWR < 2), except with 3.4 GHz (3.3–3.7 GHz) for S-band WiMAX application and 6.9 GHz (6.5–7.2 GHz) for C-band IEEE INSAT applications. Here, the lower and upper notches are realized by proposing a π-shaped slot on the radiating element and an electromagnetic bandgap structure as a resonator integrated on either side of the ground plane. Meanwhile, the impedance over a frequency range and current distribution are also plotted for the proposed design. The antenna prototype is fabricated and characterized experimentally for validation purpose. Fair matching is observed among the simulated and measured results.  相似文献   

11.

A compact wideband multi frequency microstrip antenna for wireless communication is proposed in this paper. The antenna is designed by introducing meandered slot on the patch and a pair of spur lines along the triangular notch on the finite ground plane. The overall size of the fabricated antenna is very small and low profile as the total dimension is 20?×?16 mm2. The proposed antenna operates at 3.7 GHz, 4.27 GHz and 5.1 GHz which may be suitable for WiMAX and WLAN applications. In addition with multi frequency operation a wide bandwidth (VSWR?≤?2) has been achieved from 6 to 13.7 GHz i.e. 78.2% bandwidth of center frequency, which is suitable for X-band communication and ITU band applications. The meandered slot on the patch causes multi frequency operation of the antenna with 60% compactness and the spur line along with triangular notch on finite ground plane cause bandwidth enhancement.

  相似文献   

12.
We propose a slot antenna consisting of a rectangular slot on the ground plane, fed by a microstrip line with a rectangular‐ring‐shaped tuning stub that can be deployed in ultra‐wideband (UWB) communication systems to avoid interference with wireless local area network (WLAN) communication. Our antenna can achieve a single band‐notched property from the 5 GHz frequency to the 6 GHz frequency owing to a controllable band notch that uses L‐ and J‐shaped parasitic elements. The antenna characteristics can be modified to tune the band‐notched property (4 GHz to 5 GHz or 6 GHz to 7 GHz) and the bandwidth of the band notch (1 GHz to 2 GHz). Furthermore, the shifted notch with enhanced width of the band notch from 1 GHz to 1.5 GHz is described in this paper. The UWB slot antenna and L‐ and J‐shaped parasitic elements also provide the band‐rejection function for reference in the WiMAX (3.5 GHz) and WLAN (5 GHz to 6 GHz) regions of the spectrum. Experiment results evidence the return loss performance, radiation patterns, and antenna gains at different operational frequencies.  相似文献   

13.
提出了一种具有双阻带特性的共面波导馈电超宽带天线。通过在辐射单元上开E型槽实现了3.75 GHz的第一个陷波结构,并在地板上开两条对称槽实现5.5 GHz的第二个陷波结构。文中提出的具有阻带特性超宽带天线的实测结果与仿真结果吻合较好。除了两个期望的阻带外其他超宽带频段内,该天线满足VSWR<2。同时给出了仿真辐射方向图和增益图。  相似文献   

14.
韩海龙 《电子科技》2013,26(8):68-70
介绍了一种利用变形地板来展宽平面三角形单极子天线带宽的方法。通过在天线地板上刻蚀对称的变型L型缝隙,天线的阻抗带宽增加到2.5~10.8 GHz,带内驻波比(VSWR)<2。对比没有刻蚀缝隙的天线,不仅工作频带得到展宽,而且保持了较好的辐射性能。测量和仿真结果表明,天线的工作频带能够覆盖整个超宽带(UWB)范围。  相似文献   

15.
提出了一款具有双陷波特性的蜂窝结构分形超宽带(ultra-wideband,UWB)天线,采用二阶蜂窝结构作为辐射贴片和缺陷地结构接地板实现良好的超宽带特性.通过在辐射贴片上挖去正六边形和矩形宽缝隙并引入对称鱼钩形枝节,在馈线处刻蚀倒U形窄缝隙产生了3.27~4.27 GHz和7.2~8 GHz两个频段的陷波特性.天线在2.8~11.6 GHz的频段内,可有效抑制WiMAX、C波段卫星和X波段卫星窄带系统的干扰.仿真和实测结果基本吻合,表明该天线适合应用于各种UWB通信系统.  相似文献   

16.
A novel modified printed ultra-wideband (UWB) slot antenna with a square structure and a trapezoid tuning stub as well as a band-notch characteristic is presented. By embedding two L-shaped slits at the edge of the open radiating slot, a tunable notched band, for avoiding interference between the UWB and WLAN systems, is achieved. Moreover, by optimising the dimensions of the polygon-like slot and tuning stub, the impedance bandwidth and matching of the antenna can be improved. The realised slot antenna operates over 2.6-13.6 GHz for VSWR < 2 and has a rejected band of 4.9-5.85 GHz.  相似文献   

17.
针对超宽带通信系统,提出一种小型超宽带天线,可以应用于终端设备。天线类型为共面波导馈电的缝隙型,缝隙结构为一矩形与一圆形组合而成,馈电结构与缝隙结构相似。天线的面积为22 mm×27 mm,印刷在厚度为0. 5 mm的FR4衬底上. 通过软件仿真分析了天线的工作原理以及尺寸对带宽的影响,仿真结果显示天线的带宽在不同的衬底厚度下均能覆盖UWB频段。天线的测试带宽为2.4 GHz~14.4 GHz,在超宽带的工作频段内测试效率超过76% ,测试增益大于2.1 dBi。  相似文献   

18.
This article investigates the mutual coupling reduction of a compact two elements wearable ultra-wideband (UWB) multiple-input multiple-output (MIMO) antenna. The ground plane of the proposed wearable MIMO antenna structure consists of three connected square ring-shaped stubs and two rectangular slots of narrow height. These ground stubs and slots minimize the mutual coupling effect between antennas and provide high isolation. The suggested MIMO antenna functions from the 1.87 to 13.82 GHz frequency spectrum covering WLAN (2.4–2.484 GHz), UWB (3.1–10.6 GHz), and X band (8–12 GHz) with 152.32% fractional bandwidth. It sustains port isolation above 27 dB throughout the 2 to 13.82 GHz frequency band. Inside the whole working frequency band, the suggested antenna offers a tiny envelope correlation coefficient (ECC < 0.098), greater diversity gain (DG > 9.93 dB), minimum channel capacity loss (CCL < 0.32 bits/s/Hz), and slight magnitude variation in mean effective gain of antenna ports (< 0.1 dB). The recommended antenna yields a SAR level below the designated threshold (<1.6 W/kg), affirming its suitability for body-worn applications. The designed MIMO antenna structure has an overall volume of 32 × 48 × 1.5 mm3.  相似文献   

19.
设计了一款微带馈电的超宽带缝隙天线,整体尺寸仅有30 mm×30 mm×1.6 mm,在3.08~11 GHz范围内驻波比小于2,可覆盖超宽带频段.为了实现对WiMAX和WLAN频段的陷波,分别在地板和馈线上蚀刻不同缝隙,仿真结果表明:在3.2~3.7 GHz,5 ~5.9 GHz驻波比大于2,增益显著下降,而在通带内仍然保持良好的全向辐射特性和稳定的增益.该天线结构简单、性能优良,能广泛应用于超宽带通信系统中.  相似文献   

20.
ABSTRACT

A compact planar Ultrawideband (UWB) monopole antenna with quadruple band notch characteristics is proposed. The proposed antenna consists of a notched rectangular radiating patch with a 50 Ω microstrip feed line, and a defected ground plane. The quadruple band notched functions are achieved by utilising two inverted U-shaped slots, a symmetrical split ring resonator pair (SSRRP) and a via hole. The fabricated antenna has a compact size of 24 mm × 30 mm × 1.6 mm with an impedance bandwidth ranging from 2.86 to 12.2 GHz for magnitude of S11 < ?10 dB. The four band notched characteristics of proposed antenna are in the WiMAX (worldwide interoperability for microwave access) band (3.25–3.55 GHz), C band (3.7–4.2 GHz), WLAN (wireless local area network) band (5.2–5.9 GHz) and the downlink frequency band of X band (7–7.8 GHz) for satellite communication are obtained. The measured and simulation results of proposed antenna are in good agreement to achieve impedance matching, stable radiation patterns, constant gain and group delay over the operating bandwidth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号