首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
用自由基聚合合成了具有两亲性的N-异丙基丙烯酰胺(NIPAm)与衣康酸(IA)共聚物水凝胶(NIPAm-co-IA),利用互穿网络(IPN)技术合成了壳聚糖(CS)异丙基丙烯酰胺与衣康酸互穿网络水凝胶IPN(CS/NIPAm-co-IA).研究表明, IPN(CS/NIPAm-co-IA)水凝胶具有良好的pH及温度敏感性,研究了其对辅酶A的控制释放,发现其对辅酶A具有良好的控制释放作用.  相似文献   

2.
秦爱香  吕满庚  刘群峰  张平 《精细化工》2006,23(9):849-852,858
以N-异丙基丙烯酰胺为单体、N,N′-亚甲基双丙烯酰胺为交联剂、过硫酸铵为引发剂、N,N,N,′N′-四甲基乙二胺为加速剂,在不同浓度的羧甲基纤维素的水溶液中,在低温下聚合/交联制备了一系列快速响应的温度敏感性聚(N-异丙基丙烯酰胺)水凝胶。用SEM观察了其表面形态,测定了不同温度下达到平衡时水凝胶的溶胀比,研究了水凝胶的去溶胀动力学。结果表明,与传统水凝胶相比,该水凝胶的溶胀性能有所提高,并且对温度的变化具有较快的响应速率。以质量分数为0.75%的羧甲基纤维素水溶液中制备的水凝胶为例,该水凝胶在20℃时的溶胀比为21.4,而传统水凝胶在相同温度时的溶胀比仅为12.9;该水凝胶在1 m in内失去60%的水,在4 m in内失去约80%的水,而传统水凝胶在15 m in内仅失去66%左右的水。  相似文献   

3.
以丙烯酸(AA)为单体、活性炭(AC)为惰性致孔剂、N,N-亚甲基双丙烯酰胺为交联剂、过硫酸铵为引发剂,采用自由基溶液聚合法制备了聚丙烯酸(PAA)/AC复合水凝胶,并研究了AC的引入对PAA水凝胶pH敏感性的影响以及不同pH值的缓冲液中水凝胶的溶胀动力学。结果表明:AC的引入并未影响PAA水凝胶的化学组成和热稳定性,但增大了其孔隙尺寸;AC的引入提高了PAA水凝胶的pH敏感性;冻干的PAA/AC复合水凝胶比烘干的PAA/AC复合水凝胶达到溶胀平衡的速率更快、平衡溶胀比更大。  相似文献   

4.
采用分步法制备了聚丙烯酸/N-异丙基丙烯酰胺互穿网络水凝胶,研究了互穿网络水凝胶的溶胀性能。结果表明,当水溶液的pH增大时,水凝胶的溶胀率显著增加。在一定的温度范围内,水凝胶的溶胀率随温度升高而减小。聚丙烯酸/N-异丙基丙烯酰胺互穿网络水凝胶表现出显著的温度及pH敏感双重特性。  相似文献   

5.
《弹性体》2016,(2)
以N-异丙基丙烯酰胺(NIPAM)和甲基丙烯酸(MAA)为单体,N,N-亚甲基双丙烯酰胺(BIS)为交联剂,过硫酸铵(APS)为引发剂,在氧化石墨烯(GO)水溶液中进行自由基原位聚合,制备了聚N-异丙基丙烯酰胺/聚甲基丙烯酸/氧化石墨烯(PNIPAM/PMAA/GO)复合水凝胶,研究了GO的含量变化对复合水凝胶性能的影响。结果表明,GO的加入能明显提高水凝胶的力学性能,复合水凝胶的平衡溶胀比随着GO含量的增加而降低,并且也具有优异的pH敏感性。  相似文献   

6.
鲍远志  翁世兵 《广东化工》2014,41(22):53-54
以N,N′-亚甲基双丙烯酰胺(MBA)为交联剂,以甲基丙烯酸(MA)和N-异丙基甲基丙烯酰胺(NIPMAM)作为聚合单体合成具有温度及p H双重敏感性的水凝胶。研究了MBA的用量与水凝胶溶胀过程的影响。在25℃和55℃下分别研究水凝胶在酸性和碱性条件下的去溶胀动力学和再溶胀动力学过程。  相似文献   

7.
为了研究空心玻璃微珠(HGM)的加入对合成聚丙烯酸(PAA)水凝胶的吸水溶胀性、耐盐性及pH敏感性的影响,以丙烯酸(AA)为单体、聚乙二醇为有机致孔剂、HGM为无机致孔剂、过硫酸铵为引发剂、N,N-亚甲基双丙烯酰胺为交联剂,通过自由基溶液聚合制备了5种不同HGM投料量的PAA水凝胶,并对其结构、热稳定性、表面形貌以及其在纯水、生理盐水和pH缓冲液中的溶胀行为进行了表征。结果表明,HGM的加入并不影响PAA水凝胶的化学组成和热稳定性,但有利于凝胶致孔;适量HGM的加入有助于大幅提高PAA水凝胶的吸水溶胀性、耐盐性和pH敏感性;当HGM的投料量为单体AA质量的10%时,PAA水凝胶的孔结构最丰富,其吸水平衡溶胀比可达345 g/g,吸盐水平衡溶胀比为47 g/g,pH敏感性在5种水凝胶中最佳。  相似文献   

8.
以N-马来酰化壳聚糖为交联剂,N-异丙基丙烯酰胺(NIPAAm)、丙烯酰胺(Am)、蒙脱土(MMT)为原料,过硫酸铵和N,N,N’,N’-四甲基乙二胺为引发剂和促进剂,采用水溶液自由基聚合反应合成了温敏性的P(NIPAAm-co-Am)/MMT水凝胶复合材料,研究了复合材料的温敏性、溶胀动力学、退溶胀动力学性能。研究表明:P(NIPAAm-co-Am)/MMT水凝胶复合材料具有良好的温敏性,不同蒙脱土含量的水凝胶的相转变温度(VPTT)均在37℃。由于水凝胶的大孔状结构,均表现出快速的溶胀动力学和退溶胀动力学。  相似文献   

9.
以丙烯酸(AA)、N-乙烯基吡咯烷酮(NVP)和N-异丙基丙烯酰胺为主要原料(NIPAM),以N,N′-亚甲基双丙烯酰胺(MBA)为交联剂,过硫酸钾为引发剂,采用分步法制备互穿网络水凝胶。研究了水凝胶的溶胀动力学,探究了在不同温度、p H和盐溶液浓度下水凝胶的溶胀率。结果表明,随着温度的上升,水凝胶的溶胀率呈递减的趋势。溶液的碱性越强,水凝胶吸水性越好,在p H大于8以后,吸水性能基本达到稳定。当水溶液浓度升高时,凝胶的溶胀率呈快速递减的趋势。  相似文献   

10.
以线型的羟丙基甲基纤维素(HPMC)和N-异丙基丙烯酰胺 (NIPAAm) 为原料,制备具有温度敏感性的半互穿网络水凝胶.采用荧光显微镜、红外光谱等对凝胶结构进行表征,并对不同HPMC / NIPAAm配比(W/W)的水凝胶的温度敏感性、溶胀和退溶胀动力学进行了研究.另外,以5-氟尿嘧啶(5-FU)为目标化合物,研究了...  相似文献   

11.
Interpenetrating polymer networks (IPNs) of poly(N-isopropylacrylamide)/polyurethane (PNIPAAm/PU) and poly(N-isopropylacrylamide)/poly(acrylic acid) (PNIPAAm/PAA) were synthesized to investigate the swelling and drug releasing behavior. The presence of urethane network in PNIPAAm/PU IPNs improved the mechanical strength, but reduced the swelling and drug releasing rates because of its hydrophobic characteristics. The swelling transition temperatures of PNIPAAm gels were little affected by the incorporation of PU networks in IPN structures. The drug releasing process was analyzed with a simple exponential expression of time dependent fractional drug release. The swelling and drug releasing behavior of PNIPAAm/PAa IPNs was significantly affected by the variation of PAA compositions. The drug release process changed from anomalous to dual type via zero-order mode with increasing PAA concentration due to the competitive swelling rates between PNIPAAm and PAA during release process. The releasing rate decreased in the buffer solution of pH 7.4, but increased in that of pH 5.0 with increasing PAA concentration at both 28 and 37°C because the swelling power of PAA in pH 5.0 was much less than that in pH 7.4. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 2647–2655, 1997  相似文献   

12.
Biodegradable polyrotaxane (PR)-based triblock copolymers were synthesized via the atom transfer radical polymerization (ATRP) of N-isopropylacrylamide (NIPAAm) initiated with polypseudorotaxanes (PPRs) consisting of a distal 2-bromopropiomyl bromide end-capping poly(ε-caprolactone) (Br-PCL-Br) and a varying amount of α-cyclodextrins (α-CDs) in the presence of Cu(I)Br/PMDETA at 25 °C in aqueous solution. The copolymers were featured by relatively higher yields from 46.0% to 82.8% as compared with previous reports. Their structure was characterized in detail by using 1H NMR, 13C CP/MAS NMR, GPC, WXRD, DSC and TGA analyses. When a feed molar ratio of NIPAAm to Br-PCL-Br was changed from 50 to 200, the degree of polymerization of PNIPAAm blocks attached to two ends of PPRs was in a range of 158–500. About one third of the added α-CDs were still entrapped on the central PCL chain after the ATRP process. Attaching PNIPAAm rendered the copolymers soluble in aqueous solution showing the thermo-responsibility as evidenced by turbidity measurements.  相似文献   

13.
An interpenetrating polymer network (IPN) composed of poly(vinyl alcohol) (PVA) and poly(N‐isopropylacrylamide) (PNIPAAm) was prepared by the sequential IPN method. The equilibrium swelling ratio and bending behavior under electric fields of the IPN hydrogel were measured in an aqueous NaCl solution. The IPN exhibited a high equilibrium swelling ratio, in the range 280–380%. When the IPN in aqueous NaCl solution was subjected to an electric field, the IPN showed significant and quick bending toward the cathode. The IPN hydrogel also showed stepwise bending behavior, depending on the electric stimulus. In addition, the ionic conductivity of the IPN hydrogel was measured using dielectric analysis, and its conductive behavior followed the Arrhenius equation. The conductivity of the IPN hydrogel and the activation energy for the form of the IPN were 1.68 × 10?5 S/cm at 36°C and 61.0 kJ/mol, respectively. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 890–894, 2003  相似文献   

14.
Research efforts have been devoted to demonstrate that the temperature sensitivity characters of poly(N‐isopropylacrylamide)(PNIPAAm) can be applied in the field of drug carriers. A copolymer hydrogel of N‐isopropylacrylamide/hydroxypropyl methacrylate (NIPAAm/HPMA) was synthesized by gamma irradiation. The nature of bonding was characterized by FTIR spectroscopy, whereas the thermal stability was characterized by thermogravimetric analysis (TGA). The influence of NIPAAm/HPMA composition on the swelling properties in water, at different temperatures and different pH values was studied. The release characters of caffeine drug from NIPAAm/HPMA hydrogels were also investigated. The gel fraction of NIPAAm/HPMA was found to increase slightly by increasing the ratio of HPMA in the initial solution. The IR spectra indicate the formation of copolymer hydrogels, whereas the TGA study showed that the NIPAAm/HPMA copolymer hydrogels displayed higher thermal stability than NIPAAm hydrogel. PNIPAAm hydrogel showed higher swelling in water than NIPAAm/HPMA hydrogels. Based on Fick's law, it was demonstrated that the diffusion of water into NIPAAm/HPMA is controlled. It was found that the main parameters affecting the drug release behavior from the hydrogels are composition and pH. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
A series of novel temperature- and pH- responsive water-soluble graft copolymers, casein-g-poly(N-isopropylacrylamide)(PNIPAAm), were prepared via a direct graft copolymerization of N-Isopropylacrylamide (NIPAAm) from casein. The polymerization was induced by tert-butyl hydroperoxide (TBHP) in water at general condition. Chemical structures of the graft copolymers were characterized by Fourier transform infrared spectra (FTIR), Thermo gravimetric analysis (TGA) and differential scanning calorimetry (DSC). The effect elements on graft copolymerization, such as concentration of initiator, reaction time, reaction temperature and ratio of NIPAAm to casein were investigated in terms of NIPAAm conversion, grafting percentage (GP) and grafting efficiency (GE), respectively. The graft copolymers are stimuli-sensitive with respect to both temperature and pH in aqueous solutions. It could self-assembly into core-shell particles in aqueous solution with collapsed PNIPAAm as core as well as inverse core-hair particles with expanded casein as core on changing temperature or pH, as indicated by transmission electron microscopy (TEM).  相似文献   

16.
A series of interpenetrating polymer network (IPN) hydrogels having higher swelling ratio (SR) and thermosensitivity were synthesized from sodium acrylate (SA) and N‐isopropyl acrylamide (NIPAAm) by a two‐step method. A series of the porous poly(sodium acrylate ‐co‐1‐vinyl–2‐pyrrolidone) [poly(SA‐co‐VP)], (SV), hydrogels were prepared from acrylic acid having 90% degree of neutralization and VP monomer in the first step. The second step is to immerse the SV dried gels into the NIPAAm solution containing initiator, accelerator, and crosslinker to absorb NIPAAm solution and then polymerized to form the poly(SA‐co‐VP)/poly(NIPAAm) IPN hydrogels (SVN). The effect of the different molar ratios of SA/VP and the content of NIPAAm on the swelling behavior and physical properties of the SVN hydrogels was investigated. Results showed that the SVN hydrogels displayed an obviously thermoreversible behavior when the temperature turns across the critical gel transition temperature (CGTT) of poly(NIPAAm) hydrogel. The pore diameter distributions inside the hydrogel also indicated that the pore sizes inside the SVN hydrogels were smaller than those inside the SV hydrogels. At the same time, the more proportion of SA was added into the hydrogel, the larger pore diameter of the SV hydrogel was formed. The results also showed that the SR decreased with an increase of the VP content in the SV hydrogel and more obviously decreased in the SVN hydrogels. The SVN networks also showed stronger shear moduli than SV hydrogels. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
微波辐射无皂乳液聚合制备单分散热敏性微球   总被引:5,自引:0,他引:5  
在微波辐射条件下苯乙烯(St)和N-异丙基丙烯酰胺进行无皂乳液聚合,结果表明所制备的微球粒径小于150nm且为单分散。利用透射电子显微镜(TEM)观察微球形态及粒径。通过动态激光光散射粒度仪(PCS)考察微球的热敏性,微球粒径随温度发生变化。  相似文献   

18.
Thermo‐ and pH‐sensitive polymers were prepared by graft polymerization or blending of chitosan and poly(N‐isopropylacrylamide) (PNIPAAm). The graft copolymer and blend were characterized by Fourier transform‐infrared, thermogravimetric analysis, X‐ray diffraction measurements, and solubility test. The maximum grafting (%) of chitosan‐g‐(N‐isopropylacrylamide) (NIPAAm) was obtained at the 0.5 M NIPAAm monomer concentration, 2 × 10−3 M of ceric ammonium nitrate initiator and 2 h of reaction time at 25°C. The percentage of grafting (%) and the efficiency of grafting (%) gradually increased with the concentration of NIPAAm up to 0.5 M, and then decreased at above 0.5 M NIPAAm concentration due to the increase in the homopolymerization of NIPAAm. Both crosslinked chitosan‐g‐NIPAAm and chitosan/PNIPAAm blend reached an equilibrium state within 30 min. The equilibrium water content of all IPN samples dropped sharply at pH > 6 and temperature > 30°C. In the buffer solutions of various pH and temperature, the chitosan/PNIPAAm blend IPN has a somewhat higher swelling than that of the chitosan‐g‐NIPAAm IPN. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1381–1391, 2000  相似文献   

19.
An interpenetrating polymer network (IPN) hydrogel composed of poly(vinyl alcohol) (PVA) and chitosan exhibited electric‐sensitive behavior. The PVA/chitosan IPN hydrogel was synthesized by an ultraviolet (UV) irradiation method that is used in several biomedical and industrial fields. The swelling behavior of the PVA/chitosan IPN hydrogel was studied by immersion of the gel in NaCl aqueous solutions at various concentrations. The swelling ratio decreased with increasing concentration of NaCl solution. The stimuli response of the IPN hydrogel in electric fields was also investigated. When a swollen PVA/chitosan IPN was placed between a pair of electrodes, the IPN exhibited bending behavior in response to the applied electric field. The bending angle and the bending speed of the PVA/chitosan IPN increased with increasing applied voltage and concentration of NaCl aqueous solution. The PVA/chitosan IPN also showed stepwise bending behavior depending on the electric stimulus. In addition, thermal properties of PVA/chitosan IPN were investigated by differential scanning calorimetry (DSC) and dielectric analysis (DEA). © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2285–2289, 2002  相似文献   

20.
Modified chondroitin sulfate (π‐CdS) microspheres were synthesized by way of crosslinking‐copolymerization reaction with N‐isopropylacrylamide (NIPAAm), yielding CdS‐co‐PNIPAAm copolymer network. The incorporation of vinyl groups onto the CdS was processed with the use of glycidyl methacrylate (GMA) in an aqueous solution of pH 3.5 under stirring speed of 800 rpm at 50°C. 13C NMR and 1H NMR spectra of CdS treated with the GMA indicated the formation of 3‐methacryloyl‐1‐glyceryl ester of π‐CdS and 3‐methacryloyl‐2‐glyceryl ester of π‐CdS that are the reaction products resultant of an epoxide ring‐opening mechanism via. The synthesis of microspheres was performed via radical reaction of the vinyl groups at the π‐CdS with vinyl groups at the NIPAAm in a water−benzyl alcohol microemulsion. The formation of spherical structures is the result of the polymerization‐crosslinking reaction of the π‐CdS with the NIPAAm monomers at the droplets of water, in view that both reactants have hydrophilic characteristics at the temperature at which the reaction was processed. The pure CdS hydrogel microspheres showed a slightly cracked structure with a lower diameter range while the CdS‐co‐PNIPAAm hydrogel microspheres showed a flat and tight structure with a more regular mass distribution. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号