首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Avinash  Mehmet  Kamil  Ravi   《Ad hoc Networks》2008,6(5):675-695
Network wide broadcast is a frequently used operation in ad hoc networks. Developing energy efficient protocols to reduce the overall energy expenditure in network wide broadcast can contribute toward increasing the longevity of ad hoc networks. Most of the existing work in energy efficient broadcast protocols use either a fixed transmission power model or assume global knowledge of the entire network at each node. Variable power broadcast with local knowledge has recently been proposed as a promising alternative approach for network wide broadcast in ad hoc networks.

In this paper, we present a novel approach, called INOP, for network wide broadcast. INOP is a variable power broadcast approach that uses local (two-hop neighborhood) information. INOP utilizes a novel technique for determining the transmission power level at each transmitting node. We also propose two alternative methods to cover the nodes that are not covered by the transmission of the source or a retransmitting node.

Our simulation based evaluations show that, compared to other approaches, INOP achieves better results in terms of energy efficiency, and competes with and exceeds other approaches in terms of a number of other performance metrics including traffic overhead, coverage, and convergence time. Based on these results, we can conclude that INOP improves the current state-of-the-art approaches for energy efficient broadcast in ad hoc networks.  相似文献   


2.
Directional broadcast for mobile ad hoc networks with percolation theory   总被引:2,自引:0,他引:2  
For mobile ad hoc networks, network-wide broadcast is a critical network layer function supporting route discovery and maintenance in many unicast and multicast protocols. A number of broadcast schemes have been proposed; however, almost all of them assume the usage of omnidirectional antennas and focus on broadcast overhead in terms of the number of forwarding nodes. Directional antennas have narrow beams and can potentially reduce broadcast overhead in terms of the ratio of the number of received duplicate packets to the number of nodes that receive broadcast packets. In this paper, we propose to map probability-based directional and omnidirectional broadcast to bond and site percolation, respectively, and describe a collection of directional antenna-based broadcast schemes for mobile ad hoc networks. A thorough and comparative simulation study is conducted to demonstrate the efficiency of the proposed schemes.  相似文献   

3.
高精度低功耗的时间同步对于无线传感网络至关重要,文中重点分析了高精度时间同步算法,发现其在多跳网络时间同步过程中由于每跳范围内所有节点均要广播时间同步包,会产生大量的冗余信息。为降低同步功耗,提出了一种新方法,通过调节发射功率,筛选出每一跳范围内的周边节点,使其完成下一跳范围的时间同步,而非周边节点只接受却不发送时间同步包。最后,针对改进的算法在OMNet++上进行了仿真实验,仿真结果表明,改进后的算法能够有效地降低全网能量消耗。  相似文献   

4.
A fundamental problem in large scale wireless networks is the energy efficient broadcast of source messages to the whole network. The energy consumption increases as the network size grows, and the optimization of broadcast efficiency becomes more important. In this paper, we study the optimal power allocation problem for cooperative broadcast in dense large-scale networks. In the considered cooperation protocol, a single source initiates the transmission and the rest of the nodes retransmit the source message if they have decoded it reliably. Each node is allocated an-orthogonal channel and the nodes improve their receive signal-to-noise ratio (SNR), hence the energy efficiency, by maximal-ratio combining the receptions of the same packet from different transmitters. We assume that the decoding of the source message is correct as long as the receive SNR exceeds a predetermined threshold. Under the optimal cooperative broadcasting, the transmission order (i.e., the schedule) and the transmission powers of the source and the relays are designed so that every node receives the source message reliably and the total power consumption is minimized. In general, finding the best scheduling in cooperative broadcast is known to be an NP-complete problem. In this paper, we show that the optimal scheduling problem can be solved for dense networks, which we approximate as a continuum of nodes. Under the continuum model, we derive the optimal scheduling and the optimal power density. Furthermore, we propose low-complexity, distributed and power efficient broadcasting schemes and compare their power consumptions with those-of-a traditional noncooperative multihop transmission  相似文献   

5.
莫红枝 《电信科学》2015,31(8):107-112
半双工无线电台使用两个独立频段实现信息同时发送和接收,而全双工无线电台则使用一个频段实现信息同时收发。为了进一步提升全双工网络性能,提出一种应用于全双工网络的简单高效的MAC协议——全双工MAC(full duplex MAC,FD-MAC)协议,该协议能够兼容IEEE 802.11 MAC协议。在综合考虑物理层和MAC层的基础上,分析了使用FD-MAC协议的全双工无线网络的性能。数值和仿真结果证明,和已有的全双工网络MAC协议相比,FD-MAC协议具有更优的网络吞吐性能和更低的能量消耗。  相似文献   

6.
Energy efficiency is a key design criterion for routing protocols in wireless sensor networks since sensor nodes are strongly constrained in terms of energy supply. Gradient-Based Routing (GBR) is a well known energy efficient routing protocol that is used in WSNs. However, there exist shortcomings in the GBR scheme such as: (1) sinks make use of flooding to broadcast interest messages which leads to a lot of duplication packets which are transmitted. This leads to the waste of a lot of energy in the network and (2) nodes deliver messages in a point to point manner. As a result, the potential of data retransmissions in the network is high due to the unstable network environment in WSNs. In this study, network coding and a competitive approach are proposed to solve the above two problems. Firstly, an energy efficient broadcast algorithm using network coding for GBR (GBR-NC) is proposed. This algorithm aims to reduce network traffic, and furthermore, reduce the energy consumption and prolong the lifetime of the network. Secondly, two competing algorithms (GBR-C and auto-adaptable GBR-C) are proposed for GBR. The basic idea of the proposed competing algorithms is to reduce the retransmission attempts and save the energy by considering two forward candidates. Simulation results show that the proposed schemes give better results when compared to the traditional GBR in terms of energy efficiency.  相似文献   

7.
Efficient broadcasting with guaranteed coverage in mobile ad hoc networks   总被引:2,自引:0,他引:2  
We study an efficient broadcast scheme in mobile ad hoc networks (MANETs). The objective is to determine a small set of forward nodes to ensure full coverage. We first study several methods that guarantee coverage when the local view of each node on its neighborhood information is updated in a timely manner. Then we consider a general case where nodes move even during the broadcast process, making it impractical to maintain up-to-date and consistent local views. A formal framework is used to model inaccurate local views in MANETs, where full coverage is guaranteed if three sufficient conditions, connectivity, link availability, and consistency, are met. Three solutions are proposed to satisfy those conditions. First, we give a minimal transmission range that maintains the connectivity of the virtual network constructed from local views. Then, we use two transmission ranges, one for neighborhood information collection and the other for actual data transmission, to form a buffer zone that guarantees the availability of logical links in the physical network. Finally, we propose a mechanism called aggregated local view to ensure consistent local views. By these, we extend Wu and Dai's coverage condition for broadcasting in a network with mobile nodes. The effectiveness of the proposed scheme is confirmed via both performance analysis and simulation study.  相似文献   

8.
In 1‐dimensional queue wireless sensor networks, how to balance end‐to‐end latency and energy consumption is a challenging problem. However, traditional best path routing and existing opportunistic routing protocols do not address them well because relay hop counts are usually much more, and the link appears more unreliable compared with general mesh topology. In this work, we formulate these 2 problems as a multiobjective optimization problem. Specifically, we first classify network packets into types of time tolerant and time critical and introduce a residual energy collection mechanism of neighboring nodes for forwarder set selection. We then propose a time‐aware and energy‐efficient opportunistic routing protocol (TE‐OR) to optimize energy consumption and to reduce latency for time‐critical packets. We evaluate TE‐OR by different parameters and compare it with existing protocols. The performance results show that TE‐OR achieves a trade‐off between energy consumption and time delay and balances energy consumption among nodes while guaranteeing the latency of time‐critical packets is minimized.  相似文献   

9.
A combination of wireless multicast advantage and hitch-hiking   总被引:1,自引:0,他引:1  
In the minimum energy broadcast problem, each node adjusts its transmission power to minimize the total energy consumption while still delivering data to all the nodes in a network. The minimum energy broadcast problem is proved to be NP-complete. The Wireless Multicast Advantage (WMA) is that a single transmission can be received by all the nodes that are within the transmission range of a transmitting node. The Hitch-hiking model introduced recently takes advantage of the physical layer to combine partial signals containing the same data in order to decode a complete message. In this letter, we take advantage of both WMA and Hitch-hiking to design an energy-efficient broadcast tree algorithm with Hitch-hiking (BHH). The approximation ratio of BHH is within a factor of O(logn) where n, is the number of nodes in the network. The simulation results show that BHH reduces the total energy of the broadcast tree greatly.  相似文献   

10.
Mobile ad hoc networks (MANETs) are characterized by multiple entities, a frequently changing network topology and the need for efficient dynamic routing protocols. In MANETs, nodes are usually powered by batteries. Power control is tightly coupled with both the physical and medium access layers (MACs). However, if we increase the transmission power, at the same time we increase the interference to other nodes which diminish the transport capacity of wireless systems. Thus, the routing protocols based on hop count metric suffer from performance degradation when they operate over MANET. Routing in ad hoc wireless networks is not only a problem of finding a route with shortest length, but it is also a problem of finding a stable and good quality communication route in order to avoid any unnecessary packet loss. Cross-layer design of ad hoc wireless networks has been receiving increasing attention recently. Part of these researches suggests that routing should take into account physical layer characteristics. The goal of this paper is to improve the routing reliability in MANET and to reduce power consumption through cross-layer approach among physical, MAC and network layers. The proposed cross-layer approach is based on signal to interference plus noise ratio (SINR) and received signal strength indication (RSSI) coming from the physical layer. This solution performs in one hand the ad hoc on-demand distance vector routing protocol by choosing reliable routes with less interferences using SINR metric and in another hand; it permits to reduce the power transmission when sending the data packets by using RSSI metric.  相似文献   

11.
Wireless networks are now very essential part for modern ubiquitous communication systems. The design of efficient routing and scheduling techniques for such networks have gained importance to ensure reliable communication. Most of the currently proposed geographic routing protocols are designed for 2D spatial distribution of user nodes, although in many practical scenarios user nodes may be deployed in 3D space also. In this paper, we propose 3D routing protocols for multihop wireless networks that may be implemented in two different ways depending on how the routing paths are computed. When the routing paths to different user nodes from the base station in the wireless network are computed by the base station, we call it centralized protocol (3DMA‐CS). A distributed routing (3DMA‐DS) protocol is implemented when respective routing path of each user node to the base station is computed by the user node. In both of these protocols, the user (base station) selects the relay node to forward packets in the direction of destination, from the set of its neighbours, which makes minimum angle with the reference line drawn from user (base station) to the base station (user), within its transmission range. The proposed protocols are free from looping problem and can solve the void node problem (VNP) of multihop wireless networks. Performance analysis of the proposed protocol is shown by calculating end‐to‐end throughput, average path length, end‐to‐end delay, and energy consumption of each routing path through extensive simulation under different network densities and transmission ranges.  相似文献   

12.
无线Ad hoc网络中基于节点位置的功率控制算法   总被引:2,自引:0,他引:2  
为了降低无线Ad hoc网络中节点的能量消耗,该文提出了一种基于节点位置的功率控制算法(PCAP)。PCAP算法通过分析节点间的位置关系,建立节点的优化邻居集合,并对路由层报文、MAC层控制报文和其它数据类报文使用不同的功率控制策略。PCAP算法在保证网络连接性的同时能降低网络能量消耗,计算机仿真表明,PCAP算法在MAC层的吞吐量、MAC层丢包、端到端时延等方面取得较好的性能表现。  相似文献   

13.
Tree-Based Data Broadcast in IEEE 802.15.4 and ZigBee Networks   总被引:4,自引:0,他引:4  
This paper studies efficient and simple data broadcast in IEEE 802.15.4-based ad hoc networks (e.g., ZigBee). Since finding the minimum number of rebroadcast nodes in general ad hoc networks is NP-hard, current broadcast protocols either employ heuristic algorithms or assume extra knowledge such as position or two-hop neighbor table. However, the ZigBee network is characterized as low data rate and low cost. It cannot provide position or two-hop neighbor information, but it still requires an efficient broadcast algorithm that can reduce the number of rebroadcast nodes with limited computation complexity and storage space. To this end, this paper proposes self-pruning and forward node selection algorithms that exploit the hierarchical address space in ZigBee networks. Only one-hop neighbor information is needed; a partial list of two-hop neighbors is derived without exchanging messages between neighboring nodes. The ZigBee forward node selection algorithm finds the minimum rebroadcast nodes set with polynomial computation time and memory space. Using the proposed localized algorithms, it is proven that the entire network is covered. Simulations are conducted to evaluate the performance improvement in terms of the number of rebroadcast nodes, number of duplicated receivings, coverage time, and communication overhead  相似文献   

14.
Random mobility of a node in wireless sensor networks (WSNs) causes the frequent changes in the network dynamics with increased cost in terms of energy and bandwidth. During data collections and transmission, they need the additional efforts to synchronize and schedule the activities of nodes. A key challenge is to maintain the global clock scale for synchronization of nodes at different levels to minimize the energy consumption and clock skew. It is also difficult to schedule the activities for effective utilization of slots allocated for aggregated data transmission. The paper proposes the Random Mobility and Heterogeneity-aware Hybrid Synchronization Algorithm (MHS) for WSN. The proposed algorithm uses the cluster-tree for efficient synchronization of CH and nodes in the cluster and network, level-by-level. The network consists of three nodes with random mobility and are heterogeneous regarding energy with static sink. All the nodes and CH are synchronized with the notion of the global timescale provided by the sink as a root node. With the random mobility of the node, the network structure frequently changes causing an increase in energy consumption. To mitigate this problem, MHS aggregate data with the notion of a global timescale throughout the network. Also, the hierarchical structure along with pair-wise synchronization reduces the clock skews hence energy consumption. In the second phase of MHS, the aggregated data packets are passed through the scheduled and synchronized slots using TDMA as basic MAC layer protocol to reduce the collision of packets. The results are extended by using the hybrid approach of scheduling and synchronization algorithm on the base protocol. The comparative results show that MHS is energy and bandwidth efficient, with increased throughput and reduced delay as compared with state-of-the-art solutions.  相似文献   

15.
下一代通信网络可利用无人机的高移动性满足其高覆盖、低延迟等通信需求,但安全传输的问题也由于无线信道的广播特性与日益增加的通信节点数量亟待解决.因为无人机是资源受限的空中平台,上层加密技术难以在无人机通信网络中发挥同等有效的作用.物理层安全的本质是对信道进行人为设计从而实现合法信道与窃听信道的差异最大化,在无人机通信网络...  相似文献   

16.
为了提高数据包在云计算数据中心中基于虚拟机构成网络中的传输性能,提出了一种基于网络编码的高效数据包传输方法.基于网络编码机制,采用对传输过程中丢失数据包高效的编码组合策略,多个虚拟机终端可以在一次多播或广播传输中获取多个从交换机优先传输的数据包,因此,提出的方法可以提高基于虚拟机网络的多播及广播业务的数据包传输延迟,并提高多播及广播业务的网络吞吐量.仿真结果表明提出的方法在典型信道条件下均获得了较好的数据包传输时延及网络吞吐量性能.  相似文献   

17.
Almost all existing broadcasting algorithms assume an ideal physical layer, in which a successful transmission is guaranteed if the distance between communicating nodes is less than a certain threshold, e.g., a transmission range. However, wireless communication links normally suffer from the characteristics of realistic physical layer, which significantly reduce the reliability of broadcasting among the nodes. This work addresses the minimal broadcasting problem in multi-hop wireless networks with a realistic physical layer. Given a probability p*, the problem is to design a distributed broadcasting algorithm such that each node in the network receives the broadcasting packet with probability no less than p* and the number of retransmissions is minimized. We show that this problem is NP-hard and propose a distributed greedy algorithm which maximizes the gain cost ratio at each node. We prove that the proposed algorithm guarantees that each node receives the broadcasting packet with probability no less than p*, and analyze upper bound on the number of total retransmissions in the network. Simulation results show that our algorithm can provide near 100% coverage to the wireless network with a realistic physical layer, and reduce the number of retransmissions compared with modified traditional flooding schemes k-Flooding (pure flooding with multiple times) and ACK-Flooding (pure flooding with acknowledgement). We believe our algorithmic solution is efficient and practical for general existing multi-hop wireless networks.  相似文献   

18.
Healthcare is one of the major applications of wireless systems that possess crucial issues. Specifically developing countries require a low cost and reliable network with efficient protocols. The most challenging concern of Body Area Network (BAN) is heterogeneity, which requires fairness with reliability among all the network nodes. Solutions proposed for these networks either do not provide fair packet transmission or consume high energy and introduce delays. In this paper, we propose a cross layer protocol for healthcare applications meeting the requirements and challenges of the heterogeneous BAN. The protocol is also feasible for developing countries as it can be implemented over existing wireless infrastructure and provides high network reliability with energy efficiency through cooperation and adaptability. Results show that the proposed scheme improves reliability, throughput, Packet Delivery Ratio (PDR), and energy consumption for scalable and mobile networks over conventional BAN protocols.  相似文献   

19.
《Ad hoc Networks》2007,5(2):145-161
Directional antennas have the potential to significantly improve the throughput of a wireless ad hoc network. At the same time, energy consumption can be considerably reduced if the network implements per-packet transmission power control. Typical MAC protocols for ad hoc networks (e.g., the IEEE 802.11 Ad Hoc mode) were designed for wireless devices with omnidirectional antennas. When used with directional antennas, such protocols suffer from several medium access problems, including interference from minor lobes and hidden-terminal problems, which prevent full exploitation of the potential of directional antennas. In this paper, we propose a power-controlled MAC protocol for directional antennas that ameliorates these problems. Our protocol allows for dynamic adjustment of the transmission power for both data and clear-to-send (CTS) packets to optimize energy consumption. It provides a mechanism for permitting interference-limited concurrent transmissions and choosing the appropriate tradeoff between throughput and energy consumption. The protocol enables nodes to implement load control in a distributed manner, whereby the total interference in the neighborhood of a receiver is upper-bounded. Simulation results demonstrate that the combined gain from concurrent transmissions using directional antennas and power control results in significant improvement in network throughput and considerable reduction in energy consumption.  相似文献   

20.
In ad hoc networks, wireless nodes rely on each other to transmit data over multi-hops by forwarding packets. A selfish node may decide not to forward packets for other nodes to save its own resource but still use the network to send and receive data. Such a selfish behavior can degrade network performance significantly. Most existing work took observation, reputation and token based mechanisms. However observation based mechanism suffers from mobility and collusion; reputation and token based mechanisms suffer from system complexity and efficiency. In this paper, we propose One More Hop (OMH) protocol which suppresses selfish behavior from a totally new angle. Basing on the fact that the selfish but rational nodes still want to receive and send packets, if a node can not determine whether a packet is destined for it or not, it can not drop the packet. With modified routing protocol and cryptographic techniques, OMH achieves this design target. It is robust and efficient. The simulation shows that OMH works well under different network situations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号