首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The contractile effect of ATP given alone or in the presence of other nucleotides was studied in rat aortic strips. A sustained contraction in response to ATP (30 microM to 10 mM) was observed during UTP exposure instead of the fast transient contraction produced via P2x purinoceptor activation in the absence of UTP, and contrary to the relaxation elicited when the tone had been raised by noradrenaline and KCl. This sustained ATP effect was produced in the smooth muscle and not via the same mechanism through which UTP elicited contraction, since the contractions in response to UTP and ATP were additive. They were also coupled to different transduction pathways: the effect of UTP but not that of ATP was pertussis toxin-sensitive. In contrast to the fast transient ATP contraction during basal tone, the sustained response was not desensitized by alpha,beta-methylene ATP exposure (30 microM), but was inhibited by reactive blue 2 (10 and 30 microM). Among the nucleotides assayed, UDP and ATPgammaS also enabled ATP to elicit a sustained contraction. ADP, AMP, dATP, 2-methylthio ATP, alpha,beta-methylene ATP, GTP, GDP, GMP, CTP and ITP also induced a sustained contraction in the presence of UTP. However, adenosine (1 mM) and adenine (0.3 to 3 mM) induced relaxation when the tone had been raised by UTP. According to these results a non-selective nucleotide receptor, different from the P2 purinoceptors functionally characterized so far, seems to mediate sustained contractions in rat aortic strips in the presence of UTP, UDP or ATPgammaS.  相似文献   

2.
3.
1. The effects of extracellular adenosine 5'-triphosphate (ATP) on smooth muscles are mediated by a variety of purinoceptors. In this study we addressed the identity of the purinoceptors on smooth muscle cells (SMC) cultured from human large coronary arteries. Purinoceptor-mediated increases in [Ca2+]i were measured in single fura-2 loaded cells by applying a digital imaging technique, and the formation of inositol phosphate compounds was quantified after separation on an anion exchange column. 2. Stimulation of the human coronary artery SMC (HCASMC) with extracellular ATP at concentrations of 0.1-100 microM induced a transient increase in [Ca2+]i from a resting level of 49 +/- 21 nM to a maximum of 436 +/- 19 nM. The effect was dose-dependent with an EC50 value for ATP of 2.2 microM. 3. The rise in [Ca2+]i was independent of the presence of external Ca2+, but was abolished after depletion of intracellular stores by incubation with 100 nM thapsigargin. 4. [Ca2+]i was measured upon stimulation of the cells with 0.1-100 microM of the more specific P2-purinoceptor agonists alpha, beta-methyleneadenosine 5'-triphosphate (alpha,beta-MeATP), 2-methylthioadenosine 5'-triphosphate (2MeSATP) and uridine 5'-triphosphate (UTP). alpha, beta-MeATP was without effect, whereas 2MeSATP and UTP induced release of Ca2+ from internal stores with 2MeSATP being the most potent agonist (EC50 = 0.17 microM), and UTP having a potency similar to ATP. The P1 purinoceptor agonist adenosine (100 microM) did not induce any changes in [Ca2+]i. 5. Stimulation with a submaximal concentration of UTP (10 microM) abolished a subsequent ATP-induced increase in [Ca2+]i, whereas an increase was induced by ATP after stimulation with 10 microM 2MeSATP. 6. The phospholipase C (PLC) inhibitor U73122 (5 microM) abolished the purinoceptor-activated rise in [Ca2+]i, whereas pretreatment with the Gi protein inhibitor pertussis toxin (PTX, 500 ng ml-1) was without effect on ATP-evoked [Ca2+]i increases. 7. Receptor activation with UTP and ATP resulted in formation of inositol phosphates with peak levels of inositol 1, 4, 5-trisphosphate (Ins(1, 4, 5)P3) observed 5-20 s after stimulation. 8. These findings show, that cultured HCASMC express G protein-coupled purinoceptors, which upon stimulation activate PLC to induce enhanced Ins(1, 4, 5)P3 production causing release of Ca2+ from internal stores. Since a release of Ca2+ was induced by 2MeSATP as well as by UTP, the data indicate that P2y- as well as P2U-purinoceptors are expressed by the HCASMC.  相似文献   

4.
Intracellular recordings were made in a midbrain slice preparation of the rat brain containing the ventral tegmental area (VTA). Dopaminergic principal cells were identified by their electrophysiological properties and their hyperpolarizing responses to dopamine. Superfusion with dopamine (100 microM) caused hyperpolarization and a decrease of the apparent input resistance. By contrast, two structural analogues of ATP, 2-methylthio ATP (2-MeSATP; 10 microM) and alpha,beta-methylene ATP (alpha, beta-meATP; 30 microM) had no effect, when added to the superfusion medium. Pressure applied dopamine also hyperpolarized the membrane, while both 2-MeSATP and alpha,beta-meATP were ineffective. Hence, dopaminergic principal neurons of the VTA do not possess somatic P2 purinoceptors present on peripheral and central noradrenergic neurons.  相似文献   

5.
The possible involvement of purines and/or nitric oxide (NO) in the gamma-aminobutyric acid (GABA)A receptor-mediated effects on the spontaneous activity of isolated preparations from longitudinal and circular muscles of cat terminal ileum was investigated. GABA had biphasic effects, which were neurogenic and muscarinic. ATP and adenosine dose dependently inhibited the activity of the muscles. A contractile response evoked by the nucleotide only was also observed. The effects of the purines were equipotent and resistant to Nomega-nitro-L-arginine (L-NNA), tetrodotoxin and to desensitization by alpha,beta-methylene adenosine 5'-triphosphate (alpha,beta-meATP), except for the contractile effect of ATP, which was abolished by alpha,beta-meATP. Pretreatment of the preparations with ATP or adenosine produced: (i) desensitization to the effects of the respective purinoceptor agonist only; and (ii) suppression of the GABA-induced responses of longitudinal and circular muscles. Hemoglobin and L-NNA greatly reduced or completely blocked the GABA(A)-induced relaxation and decreased the GABA(A)-induced contraction. Our results indicate that purines and NO, to a different extent, mediate the relaxant phase of the GABA effects in both layers. Interactions between muscarinic cholinoceptors and GABA-nitrergic pathway and a concomitant activation of postjunctional P1 and P2y purinoceptors are suggested to explain the prejunctional biphasic effects of GABA.  相似文献   

6.
1. The effects of exogenous adenosine 5'-triphosphate (ATP) and alpha,beta-methylene ATP (alpha,beta meATP) on C6BU-1 cells transfected with P2X2 and P2X3 subtypes, separately or together (P2X2+3), were investigated using fura-2 fluorescence recording and whole-cell patch clamp recording methods. 2. Untransfected C6BU-1 cells showed no intracellular Ca2+ ([Ca2+]i) increase in response to depolarizing stimulation with high K+ or stimulation with ATP. There was no current induced by ATP under voltage clamp conditions in untransfected C6BU-1 cells. ATP caused Ca2+ influx only from extracellular sources in C6BU-1 cells transfected with the P2X subtypes, suggesting that the C6BU-1 cell line is suitable for the characterization of Ca2+ influx through the P2X subtypes. 3. In C6BU-1 cells transfected with the P2X2 subtype, ATP (more than 10 microM) but not alpha,beta meATP (up to 100 microM) evoked a rise in [Ca2+]i. 4. In the cells transfected with the P2X3 subtype, current responses under voltage clamp conditions were observed at ATP concentrations higher than 0.1 microM of alpha,beta meATP were required. This discrepancy in the concentration dependence of the agonist responses with respect to the [Ca2+]i rise and the current response was seen only with the P2X3 subtype. In addition, the agonist-induced rise in [Ca2+]i was observed only after the first application because of desensitization of this subtype. 5. In C6BU-1 cells co-transfected with P2X2 and P2X3, ATP at 1 microM evoked a [Ca2+]i rise. This responsiveness was higher than that of the other subtype combinations tested. The efficiency of expression was improved by co-transfection with P2X2 and P2X3, when compared to transfection with the P2X3 subtype alone. The desensitization of the P2X2+3 was apparently slower than that of the P2X3 subtype alone. Therefore, this combination could respond to the repeated application of agonists each time with a [Ca2+]i rise. 6. These results suggest that the P2X2 and P2X3 subtypes assemble a heteromultimer and that this heterogeneous expression acquires more effective Ca2+ dynamics than that by homogeneously expressed P2X2 or P2X3.  相似文献   

7.
1. Adenosine, adenosine triphosphate (ATP) and some stable analogues of adenosine inhibited field stimulation-induced contractions of the uterus from rats treated with oestradiol cypionate (20 micrograms/kg, s.c.) 1 day previously. Adenosine was twice as potent as ATP; both were potentiated by dipyridamole (10 mumol/L). 2. The order of agonist potency of adenosine and its analogues was: 5'-N-ethylcarboxamidoadenosine (NECA) > N6-cyclohexyladenosine > or = R-phenylisopropyladenosine = S-phenylisopropyladenosine = 2-chloroadenosine > or = adenosine > or = ATP > > 2-p-(2-carboxyethyl) phenethylamino-5'-N-ethylcarboxamidoadenosine. This order suggests the presence of P1 purinoceptors of the A2B subtype. 3. Responses to agonists were antagonized to differing extents by the P1 purinoceptor antagonist 8-phenyltheophylline (10 mumol/L). 4. In uterine preparations from rats pretreated for 2 days with oestrogen (20 micrograms/kg, s.c.) and for 1 day with progesterone (3 mg/animal, s.c.), the inhibitory potencies of adenosine and NECA were reduced, indicating hormonal regulation of uterine responsiveness to P1 purinoceptor agonists. 5. Stable analogues of ATP caused contractions of unstimulated myometrial preparations from oestrogen-treated animals, indicating activation of a P2 purinoceptor, possibly of the P2X subtype, because of the relative order of potency was alpha, beta-methylene ATP > beta, gamma-methylene ATP = ATP = 2-methylthio ATP.  相似文献   

8.
1. Previous studies have shown that suramin and FPL 66301 are competitive antagonists at the P2X-purinoceptor in the rabbit ear artery. Those studies employed alpha,beta-methylene ATP, a poorly hydrolysable ATP analogue, as the agonist. In this study these compounds have been tested using ATP as the agonist. 2. Suramin, in the concentration range 30-1000 microM, potentiated the contractile effects of ATP, producing a 3-fold leftward shift of the ATP E/[A] curves. FPL 66301, in the concentration range 100-1000 microM, produced a significant but small (approximately 3-fold) rightward shift of the ATP curves. These results are in marked contrast with previous studies using alpha,beta-methylene ATP in which 30-fold rightward shifts were achieved using the same concentration ranges of suramin and FPL 66301. 3. Suramin and FPL 66301 were tested as ecto-ATPase inhibitors in a human blood cell assay. Suramin inhibited the enzyme with a pIC50 of 4.3, FPL 66301 with a pIC50 of 3.3. 4. The pharmacological data were analysed using a theoretical model describing the action of a compound with dual enzyme inhibitory and receptor antagonistic properties on the effects of an agonist susceptible to enzymatic degradation. The model was found to fit the data well using the known pKB estimates for suramin and FPL 66301 and similar relative (but not absolute) pK1 estimates to those obtained for the compounds in the enzyme assay. 5. From this analysis it was concluded that the limited shifts of ATP E/[A] curves produced by suramin and FPL 66301 were the result of 'self-cancellation' of the potentiating (enzyme inhibitory) and rightward-shifting (receptor antagonistic) properties.6. The analysis also indicated that the presence of ecto-ATPase activity in the rabbit ear artery preparation has a marked effect on the apparent potency of ATP. The experimental p[A50] was 3.4,whereas the 'true' value, that is the value which would be obtained in the absence of ecto-ATPase activity, was 6.0, some 400-fold higher.7 Two conclusions are drawn from this study. Firstly, caution must be exercised in the use of suramin and FPL 66301 as tools for receptor classification. Absence of overt antagonism by these compounds when metabolically unstable agonists are used could lead to erroneous claims for receptor subtypes.Secondly, the agonist potency order currently used to designate P2X- purinoceptors may require modification.  相似文献   

9.
ATP is a fast transmitter in sympathetic ganglia and at the sympathoeffector junction. In primary cultures of dissociated rat superior cervical ganglion neurons, ATP elicits noradrenaline release in an entirely Ca2+-dependent manner. Nevertheless, ATP-evoked noradrenaline release was only partially reduced (by approximately 50%) when either Na+ or Ca2+ channels were blocked, which indicates that ATP receptors themselves mediated transmembrane Ca2+ entry. An "axonal" preparation was obtained by removing ganglia from explant cultures, which left a network of neurites behind; immunostaining for axonal and dendritic markers revealed that all of these neurites were axons. In this preparation, ATP raised intraaxonal Ca2+ and triggered noradrenaline release, and these actions were not altered when Ca2+ channels were blocked by Cd2+. Hence, Ca2+-permeable ATP-gated ion channels, i.e., P2X purinoceptors, are located at presynaptic sites and directly mediate Ca2+-dependent transmitter release. These presynaptic P2X receptors displayed a rank order of agonist potency of ATP >/= 2-methylthio-ATP > ATPgammaS > alpha,beta-methylene-ATP approximately beta,gamma-methylene-L-ATP and were blocked by suramin or PPADS. ATP, 2-methylthio-ATP, and ATPgammaS also evoked inward currents measured at neuronal somata, but there these agonists were equipotent. Hence, presynaptic P2X receptors resemble the cloned P2X2 subtype, but they appear to differ from somatodendritic P2X receptors in terms of agonist sensitivity. Suramin reduced depolarization-evoked noradrenaline release by up to 20%, when autoinhibitory mechanisms were inactivated by pertussis toxin. These results indicate that presynaptic P2X purinoceptors mediate a positive, whereas G-protein-coupled P2Y purinoceptors mediate a negative, feedback modulation of sympathetic transmitter release.  相似文献   

10.
P2X receptors are a family of ion channels gated by extracellular ATP. Each member of the family can form functional homomeric channels, but only P2X2 and P2X3 have been shown to combine to form a unique heteromeric channel. Data from in situ hybridization studies suggest that P2X1 and P2X5 may also co-assemble. In this study, we tested this hypothesis by expressing recombinant P2X1 and P2X5 receptor subunits either individually or together in human embryonic kidney 293 cells. In cells expressing the homomeric P2X1 receptor, 30 microM alpha,beta-methylene ATP (alpha,beta-me-ATP) evoked robust currents that completely desensitized in less than 1 sec, whereas alpha,beta-me-ATP failed to evoke current in cells expressing the homomeric P2X5 receptor. By contrast, alpha, beta-me-ATP evoked biphasic currents with a pronounced nondesensitizing plateau phase in cells that co-expressed both subunits. Further, the EC50 for alpha,beta-me-ATP was greater in cells expressing both P2X1 and P2X5 than in cells expressing P2X1 alone (5 and 1.6 microM, respectively). Heteromeric assembly was confirmed using a co-immunoprecipitation assay of epitope-tagged P2X1 and P2X5 subunits. In summary, this study provides biochemical and functional evidence of a novel channel formed by P2X subunit heteropolymerization. This finding suggests that heteromeric subunit assembly constitutes an important mechanism for generating functional diversity of ATP-mediated responses.  相似文献   

11.
ATP is known to act as an extracellular signal in many organs. In the heart, extracellular ATP modulates ionic processes and contractile function. This study describes a novel, metabolic effect of exogenous ATP in isolated rat cardiomyocytes. In these quiescent (i.e. noncontracting) cells, micromolar concentrations of ATP depressed the rate of basal, catecholamine-stimulated, or insulin-stimulated glucose transport by up to 60% (IC50 for inhibition of insulin-dependent glucose transport, 4 microM). ATP decreased the amount of glucose transporters (GLUT1 and GLUT4) in the plasma membrane, with a concomitant increase in intracellular microsomal membranes. A similar glucose transport inhibition was produced by P2 purinergic agonists with the following rank of potencies: ATP approximately ATPgammaS approximately 2-methylthio-ATP (P2Y-selective) > ADP > alpha,betameATP (P2X-selective), whereas the P1 purinoceptor agonist adenosine was ineffective. The effect of ATP was suppressed by the poorly subtype-selective P2 antagonist pyridoxal-phosphate-6-azophenyl-2', 4'-disulfonic acid but, surprisingly, not by the nonselective antagonist suramin nor by the P2Y-specific Reactive Blue 2. Glucose transport inhibition by ATP was not affected by a drastic reduction of the extracellular concentrations of calcium (down to 10(-9) M) or sodium (down to 0 mM), and it was not mimicked by a potassium-induced depolarization, indicating that purinoceptors of the P2X family (which are nonselective cation channels whose activation leads to a depolarizing sodium and calcium influx) are not involved. Inhibition was specific for the transmembrane transport of glucose because ATP did not inhibit (i) the rate of glycolysis under conditions where the transport step is no longer rate-limiting nor (ii) the rate of [1-14C]pyruvate decarboxylation. In conclusion, extracellular ATP markedly inhibits glucose transport in rat cardiomyocytes by promoting a redistribution of glucose transporters from the cell surface to an intracellular compartment. This effect of ATP is mediated by P2 purinoceptors, possibly by a yet unknown subtype of the P2Y purinoceptor family.  相似文献   

12.
Patients suffering from the inflammatory condition of interstitial cystitis frequently exhibit an increased number of mast cells in the bladder. To determine whether mast cell mediators have the potential to influence the neurogenic contraction of the bladder smooth muscle and thereby possibly contribute to the symptoms of interstitial cystitis, we examined the effects of histamine, a major inflammatory mediator of mast cell origin, on nerve- and agonist-induced contractions of in vitro strips of guinea pig urinary bladder. Histamine (10 microM.) potentiated by more than 50% the nerve-induced contraction of bladder strips evoked by field stimulation with 0.5 msec. pulses at 4 Hz. Because the neurogenic contraction of the bladder is mediated by at least two neurotransmitters, acetylcholine (ACh) and ATP, we examined the effects of histamine on each of these transmitters. Histamine potentiated responses to the purinergic component of the neurogenic response (that part of the neurogenic response that remains after treatment with atropine) and potentiated responses to exogenously applied ATP. Histamine did not potentiate the response to the cholinergic component of the neurogenic response (that part of the neurogenic response that remains after desensitization of purinoceptors with alpha, beta-methylene ATP) nor responses to carbachol, a cholinergic agonist. These results indicate that histamine potentiates the neurogenic response of the bladder by influencing the purinergic component, apparently at postjunctional sites.  相似文献   

13.
Extracellular purine nucleotides elicit a diverse range of biological responses through binding to specific cell surface receptors. The ionotrophic P2X subclass of purinoreceptors respond to ATP by stimulation of calcium ion permeability; however, it is unknown how P2X purinoreceptor activation is linked to intracellular signaling pathways. We report that stimulation of PC12 cells with ATP results in the activation of the mitogen-activated protein (MAP) kinases ERK1 and ERK2 and was wholly dependent upon extracellular calcium ions. Treatment of the cells with adenosine, AMP, ADP, UTP, or alpha,beta-methylene ATP was without effect; however, MAP kinase activation was abolished by pretreatment with suramin and reactive blue 2. The calcium-activated tyrosine kinase, Pyk2, acts as an upstream regulator of the MAP kinases and became tyrosine phosphorylated following treatment of the cells with ATP. We have ruled out the involvement of depolarization-mediated calcium influx because specific blockers of voltage-gated calcium channels did not affect MAP kinase activation. These data provide direct evidence that calcium influx through P2X2 receptors results in the activation of the MAP kinase cascade. Finally, we demonstrate that a different line of PC12 cells respond to ATP through P2Y2 purinoreceptors, providing an explanation for the conflicting findings of purine nucleotide responsiveness in PC12 cells.  相似文献   

14.
Ecto-ATPase is a plasma membrane-bound enzyme that sequentially dephosphorylates extracellular nucleotides such as ATP. This breakdown of ATP and other nucleotides makes it difficult to characterize and classify P2 purinoceptors. We have previously shown that the P2 purinergic antagonists, PPADS, suramin and reactive blue, act as ecto-ATPase inhibitors in various cell lines. Here, we show that the P2 purinergic agonists, ATPgammaS, alpha,beta-methylene ATP (alpha,beta-MeATP) and AMP-PNP, inhibit the ecto-ATPase of bovine pulmonary artery endothelial cells (CPAE), with pIC50 values of 5.2, 4.5 and 4.0, respectively. In CPAE, FPL67156, a selective ecto-ATPase inhibitor, also inhibits ecto-ATPase activity, with a pIC50 value of 4.0. In addition, alpha,beta-MeATP (3-100 microM), which itself does not induce phosphoinositide (PI) turnover, left-shifted the agonist-concentration effect (E/[A]) curves for ATP, 2MeS-ATP and UTP by approximate 100-300 fold, while those for ATPgammaS and AMP-PNP were only shifted approximately 2-3 fold. Moreover, in the presence of alpha,beta-MeATP, not only was the potentiation effect of PPADS on the UTP response lost, but a slight inhibition of the UTP response by PPADS was also seen. Thus, we conclude that the action of ATPgammaS, alpha,beta-MeATP and AMP-PNP as ecto-ATPase inhibitors account for their high agonist potency, and also provide information for the development of ecto-ATPase inhibitors of high selectivity and potency.  相似文献   

15.
Extracellular adenosine triphosphate (ATP) plays an important role in the regulation of endothelial function. However, its receptors and their signal-transduction pathways in major cerebral arterial endothelial cells are largely unknown. This study was undertaken functionally to classify the P2 purinoceptors in cultured bovine middle cerebral artery endothelial cells by using [Ca2+]i microfluorimetry. The rank order of potency to increase [Ca2+]i was 2-methylthio-ATP approximately ATP approximately uridine triphosphate (UTP) > adenosine diphosphate (ADP) > adenosine monophosphate (AMP) > alpha,beta-methylene-ATP > adenosine, suggesting that the effect was mediated by both P2y and P2u receptors. ATP, 2-methylthio-ATP, and UTP mobilized Ca2+ from intracellular stores and triggered Ca2+ entry. The effects of ATP, 2-methylthio-ATP, and UTP were reduced by phospholipase C inhibitor 2-nitro-4-carboxyphenyl-N,N-diphenylcarbamate (NCDC), but only the effects of ATP and UTP were attenuated by pertussis toxin, indicating that P2y and P2u receptors may activate the same effector mechanisms by coupling to different G proteins. The [Ca2+]i entry caused by UTP was significantly reduced by the receptor-regulated Ca2+ channel blocker SK&F 96365, by P-450 inhibitor econazole and by inorganic Ca2+ entry blocker lanthanum. P2-receptor antagonists suramin, pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), and reactive blue 2 reduced the effects of ATP and 2-methylthio-ATP, but not those of UTP, in a concentration-dependent manner. These studies suggest a coexistence of P2y and P2u receptors in cultured bovine middle cerebral artery endothelial cells.  相似文献   

16.
The aim of this study was to determine whether 45Ca2+ influx could be used as a quantitative measure of channel activation for functional characterisation of P2X purinoceptors in cell lines. In undifferentiated PC12 cells, grown in suspension, ATP (EC50 = 45 microM), ATP gamma S (EC50 = 50 microM) and 2-meSATP (EC50 = 81 microM) but not alpha beta meATP (1 mM) stimulated 45Ca2+ influx 2-5 fold. This effect did not appear to be due to activation of P2U or P2Y purinoceptors since 1 mM UTP, ADP or ADP beta S did not produce any significant effect. Similarly, the effects of ATP were not apparently mediated through activation of P2Z purinoceptors since dibenzylATP behaved as a weak (EC50 = 191 microM) partial agonist (Maximal effect 29.5% of ATP maximum) and there was no detectable ATP-stimulated ethidium bromide uptake in the PC12 cells. ATP-stimulated 45Ca2+ influx was not affected by nifedipine suggesting that it was not secondary to activation of L-type calcium channels and rather reflected influx through a P2X purinoceptor present in these cells. The ATP-stimulated 45Ca2+ influx could be reduced by monovalent cations, presumably as a result of direct competition for influx through the cation channel, with the following rank order of potency:- guanidinium (EC50 = 16 mM) > sodium > Tris > choline > N-methyl-D-glucamine = sucrose). A number of P2 purinoceptor antagonists inhibited ATP-stimulated 45Ca2+ influx. Pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (3-300 microM), pyridoxal 5-phosphate (3-300 microM) and d-tubocurarine (30-300 microM) produced an insurmountable antagonism of responses to ATP, with no marked change in agonist EC50. Suramin (100-300 microM) and cibacron blue (30-300 microM) produced a surmountable antagonism while DIDS (4,4'-diisothiocyanatostilbene-2,2'disulfonic acid) only antagonised responses to ATP at concentrations in excess of 300 microM. The general properties of the P2X purinoceptor population identified in these cells were consistent with them being P2X2 purinoceptors. These findings suggest that ATP-stimulated 45Ca2+ influx may be used as a reliable and quantitative functional assay for characterisation of P2X purinoceptor subtypes in cell lines.  相似文献   

17.
This study aims to evaluate whether endogenous ATP or adenosine modulates the neurotransmission and contractile function of mouse phrenic nerve-diaphragm. Bath application of ATP (1 mM) and alpha, beta-methylene ATP (m-ATP, 0.1 mM) elevated muscle tones, depressed contractions (approximately 12%), and depolarized muscle membranes (approximately 20 mV). Adenosine (1 mM) or low concentrations of ATP (0.1 mM) had no effect. In a low Ca2+ media, ATP caused prolonged inhibitions of endplate potentials (EPPs), whereas m-ATP augmented EPPs while both agents produced slight effects in normal Tyrode solution. When applied by puff ejection, ATP and m-ATP additionally elicited fast transient suppressions of EPPs in association with inhibitions of high K+-evoked releases of miniature EPPs. Blockades of P2 purinoceptors with suramin antagonized all the effects of ATP and m-ATP except the prolonged inhibitions of EPPs induced by ATP, which were antagonized instead by 8-cyclopentyl-1,3-dipropylxanthine (CPDPX), an A1 adenosine receptor antagonist. Suramin and CPDPX did not change contractions nor alter EPPs evoked by a low- or high-frequency nerve stimulation. The results indicate that exogenously applied ATP and m-ATP, via activations of distinct pre- and postsynaptic purinoceptors, exert inhibitory and facilitatory pharmacological modulations on the mature neuromuscular junction. However, because of intrinsic high efficiency of the synaptic transmission under physiological conditions, endogenously released ATP and its degradation product-adenosine-do not build up to concentrations high enough to alter motor functions.  相似文献   

18.
1. We have studied the effects of purinoceptor stimulation on Ca2+ signals in bovine adrenomedullary endothelial cells. [Ca2+]i was determined with the fluorescent probe fura-2 both in population samples and in single, isolated, endothelial cells in primary culture and after subculturing. 2. In endothelial cells, maintained in culture for more than one passage, several purinoceptor agonists elicited clear [Ca2+]i transient peaks that remained in the absence of extracellular Ca2+. Adenosine 5'-triphosphate (ATP) and uridine 5'-triphosphate (UTP) were equipotently active, with EC50 values of 8.5 +/- 0.9 microM and 6.9 +/- 1.5 microM, respectively, whereas 2-methylthioadenosine 5'-triphosphate (2MeSATP), adenosine 5'-(alpha, beta-methylene)triphosphate (alpha, beta-MeATP) and adenosine(5')tetraphospho(5')adenosine (Ap4A) were basically inactive. Adenosine 5'-O-(2-thiodiphosphate) (ADP beta S) was a weak agonist. The apparent potency order was UTP = ATP > ADP beta S > 2MeSATP > alpha, beta-MeATP. 3. Cross-desensitization experiments revealed that UTP or ATP, added sequentially at concentrations of maximal effect, could completely abolish the [Ca2+]i response to the second agonist. ADP beta S exerted only a partial desensitization of the response to maximal ATP, in accordance with its lower potency in raising [Ca2+]i. 4. The effect on [Ca2+]i of 100 microM ATP in subcultured cells was reduced by only 25% with 100 microM suramin pretreatment and was negligibly affected by exposure to 10 microM pyridoxalphosphate-6-azophenyl-2', 4'-disulphonic acid (PPADS). The concentration-effect curve for ATP was not significantly affected by PPADS, but was displaced to the right by a factor of 6.5 by 100 microM suramin. 5. In primary cultures, clear [Ca2+]i responses were elicited by 2MeSATP. Suramin totally and selectively blocked 2MeSATP responses, whereas UTP-evoked [Ca2+]i transients were mainly unaffected by suramin or PPADS. Over 80% of cells tested showed responses to both 2MeSATP and UTP. The [Ca2+]i response to UTP was not desensitized in the presence of 2MeSATP. 6. ATP and UTP stimulated the release of preloaded [3H]-arachidonic acid ([3H]-AA), both in the presence and in the absence of extracellular Ca2+, by approximately 135% with respect to basal levels. Suramin and PPADS enhanced, rather than inhibited, the [3H]-AA releasing effect of ATP by 2.5 times. Suramin also potentiated the effect of the calcium ionophore A23187. 7. These results indicate that endothelial cells from adrenomedullary capillaries co-express both P2Y- and P2U-purinoceptors. P2Y-purinoceptors are lost in culture with the first passage of the cells. The P2U-purinoceptor subtype present in these cells is insensitive to PPADS and thus similar to that found in aortic endothelial cells.  相似文献   

19.
P2X receptors for adenosine 5'-triphosphate (ATP) comprise a family of ligand-gated cation channels with distinct characteristics which are dependent on the receptor subunits (P2X1-7) expressed, and the homomeric or heteromeric assembly of protein subunits in individual cells. We describe the properties of P2X receptors expressed by cultured adult rat dorsal root ganglion cells on the basis of the time course of responses to ATP, alpha, beta-methylene adenosine 5'-triphosphate (alpha, beta-meATP) and 2-methyl-thioadenosine 5'-triphosphate (2-meSATP), and using the antagonists 2',3'-O-(2,4,6-trinitrophenyl) ATP (TNP-ATP), a novel and highly selective purinoceptor antagonist, suramin and iso-pyridocalphosphate-6-azophenyl-2',5' disulphonic acid (PPADS). ATP (10 microM) evoked inward currents in approximately 95% of neurons tested and > 80% responded with a fast transient inward current that rapidly inactivated during the continued presence of ATP. Of the remaining neurons, approximately 4% showed a sustained response and approximately 10% showed a combination of transient and sustained components. Rapid application of ATP, alpha,beta-meATP and 2meSATP demonstrated these to be full agonists of the rapidly inactivating P2X receptor (pA50 values = 5.83, 5.86 and 5.55, respectively), whilst uridine triphosphate (UTP) and 1-beta,gamma-methyleneadenosine 5'-triphosphate (1-beta,gamma-meATP) were ineffective as agonists. These rapidly inactivating responses could be inhibited by TNP-ATP, suramin and PPADS (pIC50 = 9.5, 6.5, 6.4, respectively). Using inactivation protocols, we demonstrate the presence of homomeric P2X3-like receptors and non-inactivating P2X receptors, which indicates that individual subsets of adult dorsal root ganglion neurons have distinct P2X receptor phenotypes, and that individual DRG neurons may express multiple P2X receptor subtypes.  相似文献   

20.
Significant advances in understanding of P2X purinoceptor pharmacology have been made in the last few years. The limitations of nucleotide agonists as drug tools have now been amply demonstrated. Fortunately, inhibitors of the degrading ecto-ATPase enzymes are becoming available and it has become apparent that the complete removal of all divalent cations can be used experimentally in some systems to prevent nucleotide breakdown. Despite these issues, convincing evidence for P2X receptor heterogeneity, from data with agonists, has recently been reported. A number of new antagonists at P2X purinoceptors have also recently been described which to some degree appear to be more specific and useful than earlier antagonists like suramin. It is now apparent that suramin is a poor antagonist of ATP in many tissues because it potently inhibits ATPase activity at similar concentrations to those at which it blocks the P2X purinoceptor. Advances in the use of radiolabelled nucleotides as radioligands for binding studies has allowed the demonstration of P2X purinoceptors in a variety of tissues throughout the body including the brain. These studies have also provided evidence for receptor heterogeneity. Excitingly, two P2X purinoceptor genes have been cloned but operational studies suggest that more than two types exist. The cloning studies have also demonstrated a unique structure for the P2X purinoceptor which differentiates it from all other ligand-gated ion channel receptors. Further studies on P2X purinoceptor operation and structure are needed to help resolve controversies alluded to regarding the characterization and classification of nucleotide receptors. Hopefully such studies will also lead to a better understanding of the physiological and pathological importance of ATP and its activation of P2X purinoceptors. This will require the identification of better drug tools, in particular antagonists which may also provide the basis for novel therapeutic agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号