首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
Protein and micro-nutrients enriched rice–soy crisps (RSC) were prepared using supercritical fluid extrusion and their impact on quality attributes was determined. A low-shear, twin screw, co-rotating extruder was used to produce puffed RSC using supercritical CO2 (SC-CO2), which served as an expansion agent during the process carried out at lower temperatures (∼100 °C) compared to conventional steam based extrusion (∼130–180 °C). The fortified RSC contained 25–40 g/100 g soy protein and four micronutrients (iron, zinc, vitamin A and C) at the recommended daily values in 100 g product. The RSC were analyzed for physical characteristics and nutrient composition. The increasing soy protein fortification from 25 to 40 g/100 g reduced the crisps expansion ratio (4.27–2.95), crispiness (15.0–9.5), and increased piece density (0.21–0.27 g/cm3), bulk density (0.17–0.22 g/cm3) and hardness (76.39–129.05 N). The nutrient fortification improved protein (334–568%) and dietary fiber (571–901%) and the extrusion process retained all of the added minerals and about 50% retention of vitamin A and C in the final products. The SC-CO2 assisted extrusion is an effective process-based approach to produce low-moisture, fortified crispy products. These products are appropriate for consumption as nutribars especially for school lunch programs in developing countries to reduce malnutrition through process based nutrient fortification approaches.  相似文献   

3.
4.
The objective of this study was to investigate the effect of concentration and temperature on the rheological properties of soy proteins (SP) and micellar casein (MCN) systems. Individual and mixed (1:1) protein systems of 2–15% concentration were prepared and heat treated for 5 min at 40–90 °C. After cooling to 20 °C, their rheological properties were determined using steady-shear rheology. Zeta potential and particle size measurements were also conducted. Both proteins were negatively charged under all experimental conditions, but the absolute values of zeta potential and thus the stability of the protein solutions decreased with temperature and concentration. For SP solutions, viscosity and apparent yield stress increased with concentration. Shear thinning behavior was prevalent, becoming more pronounced with increasing concentration. Heat treatments at T ≥ 80 °C induced glycinin denaturation, followed by aggregation and network formation when C ≥ 7.5%. Heat treatment did not significantly affect viscosity of MCN systems, while increasing concentration resulted in a significant increase in apparent viscosity and apparent yield stress. Most MCN systems exhibited Newtonian flow behavior, with the exception of systems with C ≥ 12.5% treated at T ≥ 80 °C, which became slightly shear thickening. Mixed SP–MCN systems mimicked the behavior of SP, with most values of rheological parameters intermediate between SP and MCN-only systems. Mixtures of 7.5–12.5% concentration treated at 90 °C displayed local phase separation, low viscosity and apparent yield stress, while 15% mixtures treated at 90 °C showed protein aggregation and incipient network formation. The data generated in this study can be used to develop a range of protein based products with unique flow characteristics and storage stability.  相似文献   

5.
6.
Mechanical and microstructural properties of expanded extrudates prepared from blends of high amylose corn (Zeamays L. ssp. Mays) starch (HACS) and soy protein concentrate (SPC) were studied in relation to the physicochemical changes in starch. Effects of screw speed (230 and 330 rpm) and SPC level (10%, 20%, 30% and 50%) on expansion and mechanical properties were determined. Compared with 230 rpm, screw speed at 330 rpm resulted in increased specific mechanical energy, expansion ratio, water absorption and water solubility indices and decreased bulk density and piece density. Varying screw speeds did not significantly affect the mechanical strength of extrudates or starch molecular weight distribution. Bulk and piece densities, and water absorption index (WAI) only slightly increased or exhibited no significant trends as SPC level increased to 20%. A substantial increase in bulk and piece densities and decrease in expansion ratio and WAI were observed as SPC level increased from 20% to 30%. The trends were either reversed or moderated as SPC increased to 50%. These results in combination with average crushing force and water solubility index data provided a significant insight into the interactions between HACS and SPC during extrusion processing. As compared to an earlier baseline study by our research group on normal corn starch – SPC extrudates, results from the current study indicated that the expansion of extrudate containing HACS alone was lower than that of extrudates containing normal corn starch. However, expansion of the HACS–SPC blends was not significantly impacted at 10–20% SPC levels, whereas the expansion of normal corn starch was significantly reduced.  相似文献   

7.
Soy β-conglycinin (7S) and glycinin (11S) were incubated up to 4 h in acidic (pH 1.5 to 3.5) or alkaline (pH 10 to 12) solutions to induce protein structural unfolding followed by refolding 1 h at pH 7.0, a process known as pH-shifting. The pH-shifting markedly increased (P < 0.05) emulsifying activity of 11S and to a lesser extent 7S; the former also produced more uniform oil droplets. The emulsifying activity improvements were accompanied by a significant rise in protein surface hydrophobicity, slight loss of the secondary structure (circular dichroism), and substantial dissociation of disulfide-linked basic and acidic 11S subunits. The findings suggested that 11S globulins of soy protein isolate (SPI) were more responsive to pH-shifting treatments than were 7S globulins, and the resulting emulsifying activity enhancements of 11S, in parallel with that of SPI, were indicative of its determinant role in the overall emulsifying properties of pH-shifting-treated SPI. PRACTICAL APPLICATION: Extreme alkaline (pH 12) and acidic (pH 1.5) medium treatments can significantly modify the structure and enhance the emulsifying properties of both β-conglycinin and glycinin components of SPI. The functionality improvement by the pH processes is more remarkable for the glycinin protein fraction. Therefore, SPI enriched with glycinin seems to be particularly suitable for extreme acidic or alkaline processes to produce surface-active functional ingredients for food applications.  相似文献   

8.
The effect of addition of caseinates to soy protein isolated (SPI) based films containing lipids (33% of oleic acid or 85:15 oleic acid (OA)–beeswax blend (BW)) on water vapour permeability (WVP), mechanical and optical properties was evaluated. SPI–lipids was combined with caseinates (sodium or calcium) in different SPI:caseinate ratios with the aim of improving water vapour barrier, mechanical and optical properties of SPI films containing lipids. Caseinate incorporation to SPI based films provoked an increase of elastic modulus and tensile strength at break, mainly for calcium caseinate. Both caseinates contributed to increase the water vapour barrier properties of soy protein-based films. Caseinates also provoked an increase of transparency of SPI based films and colour softening. The most effective combination was 1:1 sodium caseinate:SPI ratio, when film contains 85:15 oleic acid:beeswax ratio.  相似文献   

9.
The storage modulus (G′) and gel hardness of non-heated and heat-treated SPI at neutral pH and those of subsequently formed GDL-induced gels were measured. The values obtained for acid-induced gels formed by heat-treated SPI were significantly increased compared to those formed by non-heated SPI. The physicochemical properties of non-heated SPI and heat-treated SPI at pH 6.9 (denaturation degree, dispersibility, water-holding capacity, sulfhydryl groups and surface hydrophobicity) were measured to correlate their effects to gel strength and gel hardness, sulfhydryl groups and water-holding capacity of GDL-induced gels.  相似文献   

10.
The objective of the work was to study the effect of dynamic high-pressure homogenization (HPH) on the interfacial and foaming properties of soy protein isolate (SP) and surface-active polysaccharides (E4M and E15) with different molecular weight.  相似文献   

11.
The following study explored how the addition of various proteins (gelatin, soy protein isolate (SPI) and heated/unheated whey protein isolate (WPI)), at two different concentration levels (1% and 2%), affected the mechanical, microstructural and optical properties of calcium cross-linked ‘wet’ alginate films. Additionally, the water holding capacity and textural profile analysis (TPA) properties were determined for the alginate–protein gels. Adding all types of protein significantly (P < 0.05) decreased the force to puncture the ‘wet’ alginate–protein composite films compared to the control alginate film. The tensile test showed significant differences in tensile strength between the various films but interestingly there was no significant difference in the percent elongation at breaks between any of the films. Micrograph images showed that the SPI and heated WPI formed relatively larger protein clumps/regions in the alginate films whereas the gelatin and unheated WPI appeared to be more integrated into the alginate film. The heated WPI films were the least transparent of all the films, followed by the SPI films. Few TPA differences existed between the alginate–protein gels. However, the alginate–gelatin gels did have significantly less water loss than the other alginate–protein gels suggesting that alginate and gelatin may be the most compatible of all the alginate–protein combinations tested.  相似文献   

12.
The effects of the reducing sugars (glucose and lactose) and the non-reducing sugar (sucrose), heated in combination with soy protein isolate (SPI) at neutral pH, on the physicochemical and rheological properties of SPI were determined. After formation of gels induced by glucono-δ-lactone (GDL), the textural profile and physicochemical bonds of the non-heated and heated SPI gels were investigated. The gelation of SPI was induced in three stages of processing that is similar to some tofu-making procedures. First, SPI was heated in the presence of sugars at neutral pH above the denaturation temperature of SPI; then gelation was induced by GDL at iso-electric pH and finally the acidic gels were heat treated again. Heat treatment with glucose at neutral pH resulted in SPI with higher glycation degree than with lactose, whereas SPI heat treated in the presence of sucrose was not glycated. GDL-induced gels of SPI glycated with glucose was more soluble in water than gels of SPI reacted with lactose, which in turn was more soluble than the control and gels of SPI heated in the presence of sucrose. This indicates a change in the net charge of proteins caused by the glycation reaction. Glucose and lactose had a protective effect on protein denaturation at neutral pH, albeit less than sucrose, resulting in GDL-induced gels with increased water holding capacity and reduced gel hardness than sucrose. Chemical analysis indicated that disulphide bonds were involved in maintaining the structure of the gels, and solubility profiles of gels in different buffers indicate that other types of covalent bonds besides disulphide bonds were formed in gels of glycated SPI, resulting in reduced gel elasticity.  相似文献   

13.
This work deals with the study of the kinetic of aroma release, which had been previously incorporated into soy protein isolate (SPI)–lipid composite films. The aim was to determine the influence of type and amount of lipidic material on aroma (n-hexanal) release and retention, as well as the apparent diffusion coefficients. To carry out this study it have been employed SPI-based films containing two SPI:LIPID ratios (1:0.25 and 1:0.5), and two types of lipids, oleic acid (OA) and beeswax (BW), in OA:BW ratios 100:0, 70:30, 50:50, 30:70 and 0:100. The measurements were performed by a gas chromatography technique. The films that showed more retention were SPI:LIPID 1:0.5 100% BW and control film. Concerning release rate, films containing BW as unique lipid material gave the lowest aroma release rate. Apparent diffusion coefficients (Dapp) of all films are in the same order of magnitude (10−15 m2 s−1). Dapp decreases when BW increases in the film matrix and when oleic acid amount decreases. In conclusion, for encapsulating n-hexanal, SPI-BW films demonstrated the best performances, followed by control film (without lipids).  相似文献   

14.
A simplified linseed meal fractionation procedure for the extraction of protein and fibre has been developed. Response-surface methodology was used to investigate optimal parameters for linseed meal extraction. Based on the data of this extraction screening, the process technology was transferred to the pilot scale, obtaining a soluble protein and fibre containing fraction, and an insoluble fibre fraction. Water-binding and oil-binding capacities, protein solubility, emulsification capacity and foaming activity of the products were measured. The results indicated excellent functional properties of the two fractionation products, applicable especially to bakery products.  相似文献   

15.
The present study aimed to investigate the effect of recipe and temperature–time on the formation of acrylamide and 5-hydroxymethylfurfural (HMF) during biscuit baking. Baking experiments were performed with biscuits of two different recipes, with and without NaCl, at 180 °C, 190 °C and 200 °C. Acrylamide and HMF reached highest concentrations at 200 °C for both recipes. The presence of NaCl in the biscuit formulation lowered acrylamide concentrations at 180 °C and 190 °C but not at 200 °C, and led to higher concentrations of HMF at all the tested temperatures. Sucrose hydrolysis was a key step in acrylamide and HMF formation during biscuit baking, even though a significant amount of acrylamide already had formed before the onset of sucrose hydrolysis. A lag phase was observed before sucrose hydrolysis occurred, which might depend on the melting of crystalline sucrose occurring at approximately 180 °C.A mathematical model based on the chemical reaction pathways was developed for the recipe with NaCl baked at 200 °C. The model described the chemical evolution during the last part of biscuit baking, and accurately predicted acrylamide and HMF content at the end of baking. The model showed the significant contribution of the reducing sugars to the formation of both acrylamide and HMF. The model could not be extended to the entire baking period because it was not possible to incorporate the lag phase observed before sucrose hydrolysis. The results reported in this study confirm that the kinetics of acrylamide and HMF formation in real food and dry systems may depend on the physical state of their precursors.  相似文献   

16.
In this study, the effects of steaming treatments during the preparation of structurally enhanced air-dried rice noodles were investigated. Soy protein isolate-rice noodles (RNS) were combined (COM) with microbial transglutaminase (MTG) and glucono-δ-lactone (GDL), and steamed for 5 (S5) or 10 (S 10) min followed by air-drying to yield air-dried RNS-COM-S5 and RNS-COM-S10, respectively. Control samples were air-dried rice flour noodles (ADRN), steamed for 5 or 10 min before air-drying (ADRN-S5 and ADRN-S10). Compared to other air-dried RNS prepared without steaming, RNS-COM-S5 and RNS-COM-S10 showed a reduction in cooking time (5.35 min) and cooking loss (7.11%) and increased cooking yield (125%), supposedly due to low gelatinisation enthalpy, while retaining textural and mechanical properties, significantly higher (P < 0.05) than the controls. The scanning electron micrographs showed that all steamed air-dried noodles also had larger hollows, which could be responsible for the improved cooking qualities. In general, the relative order of starch crystallinity resulting from steaming treatment decreased in all steamed noodles, and RNS-COM1-S10 showed the highest order. The treatment of RNS with MTG and GDL yielded air-dried noodles with a more compact structure. Steaming is necessary to improve the rehydration characteristics of the air-dried noodles without sacrificing textural and mechanical qualities.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号