共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
一种新的面向超分辨率的图像配准方法 总被引:1,自引:0,他引:1
图像配准是超分辨率图像恢复的关键技术之一,现有的图像配准算法没有考虑目标运动幅度变化大和目标在视场中远离镜头或靠近镜头的情况,针对于此,该文提出了基于运动轨迹的面向超分辨率图像恢复的配准方法,用以解决目标运动幅度变化大和目标分辨率改变情况下的图像配准问题,试验表明该文提出的算法能够有效地解决实际问题,效果很好。 相似文献
3.
提高医学图像的清晰度对于医生迅速的做出病情的诊断与分析具有重要的意义,为充分提高医学图像的纹理细节清晰度,提出一种基于残差网络的医学图像超分辨率重建算法。选取合适的数据集,使用非常深的卷积神经网络,多次级联较小的滤波器,充分提取图像中的信息;使用残差学习的方式以及Adam优化方法来加快深层网络模型的收敛;将不同放大倍数的训练集组合成混合数据集进行训练,提高性能的同时大大减少了参数数量与训练时间。实验结果表明,所提算法的PSNR、SSIM、FSIM均高于现有的几种算法,重建出的图像细节更加丰富,边缘更加完整。 相似文献
4.
单幅图像超分辨率(Single Image Super Resolution,SISR)在计算机视觉领域占有重要地位,该技术旨在从低分辨率图像中重建出高分辨率图像。近年来,深度神经网络在SISR领域起到了至关重要的作用,然而,目前利用卷积神经网络平等地对待高频与低频特征,使得高频细节的重建表现不佳,输出过于平滑,缺少纹理信息。另一方面,过于深的网络不容易收敛,并且随着神经网络的深度增长,来自前一层的长期信息很容易在后期层中减弱或丢失,使得重建收益不能正比于网络的深度与计算复杂度。针对以上问题,对用于SISR的卷积神经网络的基本块提出了空间注意力模块与通道注意力模块,在同一通道中,不同位置的信息被空间注意力模块赋予不同的权重,不同通道间的权重由通道注意力模块决定,这使得高频信息在重建任务中获得更高的地位,提高了重建指标。进一步地提出了长期特征调制模块将网络的层深度转化为块深度,大大缩小了网络深度,以解决前层长期信息的丢失问题。在Set5等多个基准数据集上的峰值信噪比(PSNR)均比目前其他基于深度卷积神经网络的方法有所提升,这证明了提出的方法的有效性与先进性。 相似文献
5.
在基于字典的单帧图像超分辨率重建算法中,依赖人工浅层特征设计的字典表达图像特征能力有限。为此,提出基于深度学习特征字典的超分辨重建方法。该算法首先利用深度网络进行高、低分辨率训练样本图像深层次特征学习;然后,在稀疏字典超分辨框架下联合训练特征字典;最后,输入单帧低分辨率图像并利用该字典实现超分辨率重建。理论分析表明,引入深度网络提取图像深层次特征并用于字典训练,对低分辨率图像的高频信息补充更加有利。实验证明,与双三次插值以及基于一般人工特征字典的超分辨重建算法相比,本文算法的主观视觉和客观评价指标均高于对比算法。 相似文献
6.
针对极深神经网络图像超分辨率重建过程中,存在图像特征提取少、信息利用率低,平等处理高、低频信息通道的问题,提出了残差卷积注意网络的图像超分辨率重建算法.构造多尺度残差注意块,最大限度地提高网络提取到多尺寸特征信息,引入通道注意力机制,增强高频信息通道的表征能力.引入卷积注意块的特征提取结构,减少高频图像细节信息的丢失.... 相似文献
7.
受成像设备、传输条件等因素限制,遥感图像的清晰度难以保证。图像超分辨率技术旨在从低分辨率图像中恢复出高分辨率图像,对遥感图像的高质量解译具有重要意义。针对传统方法依赖多帧图像序列、重建结果过于平滑等问题,提出一种基于边界平衡生成对抗网络的单帧遥感图像超分辨方法。生成器与判别器均设计成带跳跃连接的端到端自编码器结构,为增强生成图像质量及加速网络收敛,使用了一种基于判别器重构误差的损失函数。在NWPU-RESISC45数据集上的实验结果表明,该方法能够提供更多的高频信息,重建结果最接近真实图像,相较于邻近插值和双三次插值方法,PSNR提升约2.70 dB,相较于其他基于深度卷积神经网络的方法,PSNR提升约0.72 dB。 相似文献
8.
9.
基于图像类推的超分辨技术 总被引:1,自引:1,他引:1
目前的图像超分辨技术都依赖于从适当的外部数据集合中提取信息以对图像进行增强,然而这个条件在很多实际应用中难以得到满足.通过对理想边缘模型与纹理内容的分析,发现图像在尺度空间上具有局部结构的自相似性及可传递性.基于这个特点,应用图像类推技术(image analogies,简称IA),可以将图像的局部特性在不同尺度上进行传递,从而为低分辨图像补充结构信息.在实现上。利用原图像和退化图像建立训练集合,用能量图构建学习网络,将图像类推问题转化为求解最小图能量问题.实验结果表明,这种自我类推方法不仅可以有效地提高放大图像的清晰程度,而且较一般的IA算法速度大为加快,更为重要的是,它可以摆脱一般方法对训练集合的依赖,完全独立进行. 相似文献
10.
11.
该文构建了一种可对不同形式的多尺度结构进行归纳的统一框架,并基于该框架系统地探究了多尺度卷积的两个因素——特征传播和跨尺度交互,提出了简单而有效的多尺度卷积单元——多尺度-跨尺度-权重共享的卷积(MS3-Conv)网络。实验结果表明,与基于标准卷积的网络相比,基于MS3-Conv的网络可使用较少的参数和较低的计算成本实现更好的图像重建性能。除了定量分析,该文也对重建图像进行可视化分析,证明了MS3-Conv网络能更好地恢复高频细节。 相似文献
12.
图像超分辨率(Super Resolution,SR)技术能够从低分辨率图像中恢复出高分辨率图像,已被广泛应用于遥感、医学影像、目标跟踪与识别等多个领域。随着深度学习研究的深入,该技术也被成功应用于 SR 相关研究中,但现有工作往往只关注输出图像的质量,而忽略了训练和重构效率。该文基于对图像特征和训练效率的观察,提出了一种基于多模型的 SR 框架——MMSR,能够根据不同的图像特征选择合适的网络模型,从而在不影响输出图像质量的情况下有效缩短训练时间。面向 DIV_2K 图像集的测试结果表明,该框架能够实现平均 66.7% 的性能提升,同时具有良好的可扩展性。 相似文献
13.
14.
15.
光谱相似性是指高光谱图像中的大量像元具有相似光谱的性质.提出了一种基于光谱相似性的高光谱遥感图像超分辨率算法,利用遥感图像中广泛存在的结构自相似性提升图像的空间分辨率,利用高光谱图像的低维子空间性通过主成分分析降低光谱维数提高运算效率,利用具有相似光谱的像元构建光谱约束项保证重建图像光谱的准确性.该算法在将单波段图像超分辨率方法推广到处理具有数百、乃至上千波段的高光谱图像过程中,既保证了重建图像光谱的准确性,又具有较高的运算效率.实验表明,与双三次插值和基于稀疏表示与光谱正则化约束的高光谱图像超分辨率算法相比,该算法具有更高的空间分辨率提升能力和更好的光谱保真能力. 相似文献
16.
提出一种稳健的超分辨率重建算法,并在影像鉴定中加以具体运用。通过对边缘图像进行建模,构建基于洛伦兹分布的最大后验概率重建算法,并自适应地调整洛伦兹宽度参数来逐步修正迭代结果。实验结果证明,该算法能获得理想的图像画面重建效果,具有较强的稳健性。 相似文献
17.
医学图像在病人的诊疗过程中具有重要的参考意义。然而,受设备分辨率和放射剂量的影响,现有设备获得的医学图像分辨率较低,容易对最终诊疗结果产生不利影响。针对这个问题,提出了一种自适应块聚类的医学图像超分辨重建算法。首先,该算法对图像进行四叉树分解,自适应地获得不同尺度的图像块;然后,通过图像块特征提取和聚类处理得到各个不同尺度图像块的聚类中心;最后,利用聚类中心和相应的回归系数重建出高分辨率图像。实验结果表明,所提方法在医学图像重建效果和峰值信噪比、结构相似性对比等方面能够取得更好的效果。 相似文献
18.
针对一般学习算法效率低下的问题,提出一种马尔可夫网络模型下的非线性学习算法。对输入的低分辨率图像以及训练用高分辨率图像和对应的低分辨率图像进行分块,并使图像基本对齐,构造训练图像集,利用训练集人脸图像的差异,采用块坐标限位操作技术,给出一种非线性样本搜索算法,降低搜索空间复杂度,提高了匹配效率和相关性。利用搜索到的高分辨率图像分块样本,直接输出超分辨率图像。分析和实验证实,与传统学习算法相比,该方法具有输出质量好、效率高的特点。 相似文献
19.
提出了一种基于小波域局部高斯模型的图像超分辨率算法。小波域局部高斯模型采用单一的高斯函数刻画子带系数的局部概率分布,由于该模型具有很好的局部自适应性,可以较好地反映图像的局部结构信息,因此以此作为自然图像的先验模型,将图像超分辨率问题转化为小波域约束优化问题,并用共轭梯度法对其进行求解。实验结果表明,基于小波域局部高斯模型的图像超分辨率算法较好地再现了图像的各种边缘信息,重构出的高分辨率图像在信噪比和视觉效果方面都有较明显的提高。 相似文献
20.
论文从Harris等人提出的图像超分辨率理论出发,分析了传统图像超分辨率理论的不妥之处,并在此基础之上对成像模型进行了改进。以改进模型为依据,指出数字图像频谱的混迭是影响数字图像分辨率的主要因素之一,并且这种混迭是不可避免的,也是不可能被完全消除的。在数字图像超分辨率重建中,奈奎斯特抽样定理已经不能适用了,此种重建过程应该是减小混迭的过程,根据重建精度的要求,相应的来减小混迭。在图像混迭的基础之上,提出了一种数字图像分辨率的概念,由此概念出发,可以为数字图像超分辨率重建提供新的途径和评价方法。 相似文献