首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用实体试验的方法,选用棉绳和聚氨酯试验火,在大空间建筑中进行早期火灾试验。文章从不同季节试验环境温度和高大空间内不同火源位置的角度对烟气羽流温度进行了对比分析,发现并总结了早期火灾烟气在高大空间建筑中的运动规律,为高大空间建筑物火灾探测报警设备选型及设置提供理论依据。  相似文献   

2.
通过实体试验,研究高大空间场所中吸气式感烟火灾探测器的不同布置方式,对于不同火源类型、不同火源位置和不同气流干扰条件的响应性能,指出在高大空间建筑中该类型火灾探测器的布防原则和方式。  相似文献   

3.
高大空间建筑不同类型火早期烟气运动规律   总被引:1,自引:0,他引:1  
采用实体试验的方法,选用棉绳和聚氨酯试验火,在大空间建筑中进行早期火灾试验。从火源类型和质量的角度对烟气速度、温度进行对比分析,总结早期火灾烟气在高大空间建筑中的运动规律。棉绳热释放速率小,烟气温度较低,烟羽流受热浮力作用小,烟气速度低,同时由于试验空间高大,烟气无法到达顶棚;聚氨酯燃烧迅速,随着火势和高度的增大烟羽流上升速度加快,上升途中不发生扩散,最终到达试验空间顶棚。质量大的棉绳火烟气温度高,产烟量大,所受热浮力大,速度有较明显上升趋势。质量大的聚氨酯烟气速度和温度变化速率明显比质量小的聚氨酯快。  相似文献   

4.
火区的烟气流动现象是火灾探测和扑救的主要着眼点和立足点,本文采用实体试验的方法,对大空间建筑火灾烟气在不同通风条件以及不同环境温度下的运动情况进行了分析研究,得到了高大空间建筑中通风和环境温度对火灾烟气运动的主要影响作用。  相似文献   

5.
为研究单室墙角火火灾壁面烟熏痕迹特征,采用1/3尺寸火灾试验还原单室墙角火火灾,测定壁面不同点的温度及烟气蔓延速度,研究火源在不同位置时的壁面烟熏痕迹特征;利用PyroSim软件模拟烟气蔓延过程。结果表明:火源位于房间中间时,在屋顶呈现圆形痕迹;火源在墙角时,两边侧墙和墙角顶部形成明显烟熏痕迹;墙角火在墙角位置的温度和烟气蔓延速度高于房间中间起火;试验结果与模拟结果吻合。试验结果可为调查墙角火火灾提供理论及试验依据。  相似文献   

6.
为研究地下环道不同火源功率下火羽流卷吸特性机理,采用数值模拟结合理论分析,设置9个典型火灾场景,定量分析火羽流温度场、烟羽流高度变化等卷吸特性。得出结论认为,火源功率对温度场影响最大,对烟气层高度影响较小;火源位于主干隧道火灾危险性最高,该位置发生火灾时不同火源功率下的温度、烟气层高度均达到人员疏散危险值。研究可补充现有受限空间的火灾动力学理论,为地下受限空间烟气控制、人员疏散及火灾综合防治提供理论依据。  相似文献   

7.
确定350℃为高大空间钢结构耐火的临界安全温度,提出了高大空间钢结构坍塌风险评估方法。基于热平衡方程建立了受火钢构件温升计算方法,方法中包含了火源辐射对钢构件的热作用、烟气辐射对钢构件的热作用以及烟气热对流对钢构件的热作用。分析某钢结构仓库内部发生15 MW火灾时,屋面钢结构的稳定性。结果表明,建筑面积小于6 000 m2且建筑高度小于8m的高大空间钢结构内部发生15 MW火灾时,屋面钢结构存在坍塌风险。  相似文献   

8.
为研究蔓延火灾下钢框架结构建筑室内火灾温度场、钢构件温度分布和位移的发展规律,对1个足尺的两层钢框架结构进行蔓延火灾试验,测量试验区域内关键位置的空气温度、钢构件温度和位移。试验结果表明:试验中火源房间内的火灾过程呈现4个明显的发展阶段,受火70min时室内火灾达到全盛,测得火灾烟气层最高温度730℃;受火82min时火灾从火源房间蔓延至邻近房间,导致了邻近房间内各受火钢构件温度峰值出现在不同时刻,同时,各构件历经扩散热烟气加热、直接受火加热和冷却降温3个阶段,呈现反复升降温的受火过程;受火过程中,钢构件温度变化显著滞后于火场温度,受火钢柱先后升温产生向上的轴向变形。与传统室内火灾相比,蔓延火灾扩大了火场范围和钢结构受火范围,对结构安全和人员安全造成更大威胁,因此在进行结构抗火设计时应得到充分考虑。  相似文献   

9.
为研究蔓延火灾下钢框架结构建筑室内火灾温度场、钢构件温度分布和位移的发展规律,对1个足尺的两层钢框架结构进行蔓延火灾试验,测量试验区域内关键位置的空气温度、钢构件温度和位移。试验结果表明:试验中火源房间内的火灾过程呈现4个明显的发展阶段,受火70min时室内火灾达到全盛,测得火灾烟气层最高温度730℃;受火82min时火灾从火源房间蔓延至邻近房间,导致了邻近房间内各受火钢构件温度峰值出现在不同时刻,同时,各构件历经扩散热烟气加热、直接受火加热和冷却降温3个阶段,呈现反复升降温的受火过程;受火过程中,钢构件温度变化显著滞后于火场温度,受火钢柱先后升温产生向上的轴向变形。与传统室内火灾相比,蔓延火灾扩大了火场范围和钢结构受火范围,对结构安全和人员安全造成更大威胁,因此在进行结构抗火设计时应得到充分考虑。  相似文献   

10.
大空间建筑火灾机械排烟的初步研究   总被引:4,自引:1,他引:3  
文章分析了大空间建筑内机械排烟的要求,并在大空间火灾实验厅内进行了不同火源功率下的机械排烟试验,结果表明,在大空间火灾中生成的烟气温度比较低,很容易发生沉降及与空气混合,机械排烟造成空气与烟气的混合,主要是通过逐渐稀释来源除烟气的。在进行机械烟时还应考虑风机对流场的扰动、补风口位置的影响。  相似文献   

11.
针对采用自然排烟方式的扁平空间建筑火灾,采用1∶20缩尺寸模型,研究不同排烟失效模式、火源功率和火源位置等因素对烟气层特性的影响。使用天平记录燃料质量变化并计算火源功率,采用热电偶采集顶棚下烟气层温度数据,研究扁平空间顶棚低温区和高温区的分布特性。试验表明:各工况下燃料质量损失速率变化不大;火源靠近壁面时,高温烟气区占比减少;排烟口和补风口的多种失效模式对扁平空间火灾的顶棚烟气层分布特征影响较小。  相似文献   

12.
空调通风工况地铁站台初期火灾烟气运动规律   总被引:3,自引:1,他引:2  
通过在地铁站台进行的火灾实体试验,对车站各种空调通风条件下棉绳阴燃火与聚氨酯明火的烟气速度、温度进行监测与分析,研究地铁中具有格栅镂空吊顶的车站站台在不同空调通风工况下火灾初期烟气运动的规律。多点风速探头和温度记录探头设置在火源正上方以及在距火源水平距离约2 m远的4个位置,分别设置在镂空格栅吊顶的上方和下方。在空调通风工况下,送风对烟气的上升有不同程度的抑制作用,一定程度上延长了火源的燃烧时间。对于阴燃火源,烟气温度的降低导致烟气很难升至吊顶上方。  相似文献   

13.
高大空间建筑火灾在烟气蔓延特性、火灾探测报警系统、自动灭火系统等方面与传统建筑火灾有很大不同。本文通过对高大空间建筑火灾烟气运动、探测与报警技术进行综合性的分析和研究,分析了高大空间羽流、顶棚射流、近壁面回流与传统建筑火灾的共性及差异,研究了安装高度与红外光束感烟型火灾探测器报警时间的关系,为大空间建筑内火灾探测器的合理设置提供参考。  相似文献   

14.
在大空间火灾试验厅内采用沙发作为火源,研究了烟气层的发展过程,并将得出的烟气层温度、烟气层下降曲线与油池火对比。结果表明:不同的火源条件下,烟气的温升曲线和烟气层下降曲线是不同的,对于稳定的油池火,烟气层下降曲线是光滑的,对于非稳定火源,烟气层下降曲线存在跳变现象;烟气层厚度较小时,火源热释放速率的大小对烟气层的温度、烟气层的下降速率有着重要影响;对于变热释放速率情况下的烟气充填,可以采用对热释放速率的分段近似来进行模拟分析。  相似文献   

15.
赵欣莉 《钢结构》2014,(5):70-76
为了研究网架在高大空间火灾空气升温条件下的抗火性能,结合某正放四角锥网架,采用有限元方法对网架在高大空间温度场下的抗火性能进行模拟分析。火源中心分别选择了3种不同位置对结构进行温度场划分和抗火分析。确定网架结构的耐火极限准则,得到不同工况下结构的极限抗火时间;研究不同工况下结构的内力、位移等响应变化过程及分布规律;同时对比分析各工况下网架结构抗火性能的差异。  相似文献   

16.
为了进一步完善大空间建筑火灾烟气升温计算公式的适用范围,采用FDS模拟在不同平面长宽比、火源功率和建筑高度的火灾场景中,火源移动时烟气温度分布的变化规律。结果得出,公式对于建筑面积和火源功率较大、平面长宽比大于3的建筑空间不适用;当火源在一个几何临界范围内移动时,大空间建筑升温计算公式是适用的;这个几何临界范围会受到建筑高度的影响。  相似文献   

17.
对武汉光谷广场综合体全地下高大空间最不利火源位置处行李引发火灾时,采用自然排烟设计方案的效果进行了研究,对火灾时烟气的蔓延过程、能见度、温度场及CO浓度等指标进行了模拟分析。研究表明,该地下高大空间利用顶部采光带设置自然排烟窗,在火灾发生时能将火灾烟气有效排出,且能为人员疏散提供安全环境。烟气上升过程中,装修吊顶对烟气的阻隔效应明显,随着吊顶镂空率的减小,自然排烟效率下降。建议吊顶镂空率应大于33%,以确保烟气有效排出和人员安全疏散。  相似文献   

18.
近年来气承式膜结构储煤棚已逐步应用于火电厂煤场封闭改造项目,其抗火性能是使用阶段重点关注的安全性之一。气承式膜结构储煤棚属于大空间建筑,针对煤棚抗火性能问题,国内外学者对煤棚的起火因素、起火位置及火灾危险性进行了研究,对不同建筑面积的大空间建筑结构进行了火灾试验、理论分析。本文在深入分析前人研究的基础之上,对煤棚的起火位置和大空间建筑结构抗火性能的发展和研究现状进行了梳理和归纳。依托于实际工程项目,建立了不同建筑面积、建筑高度、排烟方式、火源功率的气承式膜结构储煤棚计算模型,通过对计算模型进行升温特性研究,得到了燃烧过程中最高温度与空间位置的关系,并针对工程应用中亟待解决的一些技术问题进行了思考与初步探索。  相似文献   

19.
为研究铝合金板式节点网壳结构在实际火灾下的响应,针对一网壳缩尺模型进行了结构受火试验.采用柴油油池火作为火源,考虑不同的火源功率、火源位置和通风条件,设计了8个受火场景.在结构受火试验前,进行了两次柴油燃烧特性试验,并将试验结果与经典羽流模型的预测值进行了对比分析.结构受火试验结果表明:空间温度场在大空间火灾下分布不均匀,且火源位置和火源功率对结构温度场分布具有较大影响;在各受火场景中,大功率火源位于结构角部且通风条件不佳时为最不利火灾场景;在该火灾场景下,所测得的最高空气温度为128℃,而杆件和节点板的最高实测温度分别为92℃和84 ℃;在所有结构模型受火试验过程中,均发现网壳发生起拱变形,但试验结束后变形可恢复,且未观测到其他破坏现象.对试验过程进行数值模拟,结果表明火灾下结构的热膨胀变形可能提升其稳定承载力,因此在设计时建议分别基于有热膨胀变形和无热膨胀变形的结构进行稳定承载力分析,并取两者结果中的较小值作为结构火灾下承载力的设计值.  相似文献   

20.
为研究铝合金板式节点网壳结构在实际火灾下的响应,针对一网壳缩尺模型进行了结构受火试验.采用柴油油池火作为火源,考虑不同的火源功率、火源位置和通风条件,设计了8个受火场景.在结构受火试验前,进行了两次柴油燃烧特性试验,并将试验结果与经典羽流模型的预测值进行了对比分析.结构受火试验结果表明:空间温度场在大空间火灾下分布不均匀,且火源位置和火源功率对结构温度场分布具有较大影响;在各受火场景中,大功率火源位于结构角部且通风条件不佳时为最不利火灾场景;在该火灾场景下,所测得的最高空气温度为128℃,而杆件和节点板的最高实测温度分别为92℃和84 ℃;在所有结构模型受火试验过程中,均发现网壳发生起拱变形,但试验结束后变形可恢复,且未观测到其他破坏现象.对试验过程进行数值模拟,结果表明火灾下结构的热膨胀变形可能提升其稳定承载力,因此在设计时建议分别基于有热膨胀变形和无热膨胀变形的结构进行稳定承载力分析,并取两者结果中的较小值作为结构火灾下承载力的设计值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号