共查询到20条相似文献,搜索用时 15 毫秒
1.
康明 《武汉理工大学学报(材料科学英文版)》2010,(2)
Li + , Na + , or K + co-doped CaO: Eu3+ phosphors were prepared by the combustion synthesis method and characterized by X-ray diffraction (XRD), photoluminescence and photolumi- nescence excitation (PL-PLE) spectra. The experimental results show that, upon excitation with 250 nm xenon light, the emission spectrum of the CaO: Eu3+ consists of 4f-4f emission transitions from the 5D0 excited level to the 7FJ (J=1, 2, 3) levels with the mainly electric dipole transition 5D0→7F2 of Eu3+, indicating that the Eu3+ occupies a low symmetry. The charge-transfer band (CTB) shows somewhat red shift with the decreasing ionic radii of co-doped alkali metal ions. The PL and PLE intensities are significantly enhanced, especially the strongest intensity of luminescent is CaO: Eu3+, Li + phosphor, when alkali metal ions are incorporated. The strongest peak of emission is slightly shifted from 614 to 593 nm, indicating that the Eu3+ ion locates in a symmetric position (Oh) when alkali metal ions are incorporated. 相似文献
2.
吕兴栋 《武汉理工大学学报(材料科学英文版)》2008,23(5):652-657
The polycrystalline Eu^2+ and Dy ^3+ co-doped strontium aluminates SrAl2O4: Eu^2+, Dy^3+ with different compositions were prepared by solid state reactions. The UV-excited photoluminescence, persistent luminescence and thermo-luminescence were studied and compared. Results show that the doped Eu^2+ ion in SrAl2O4: Eu^2+, Dy^3+ phosphors works as not only the UV-excited luminescent center but also the persistent luminescent center. The doped Dy^3+ ion can hardly yield any luminescence under UV-excitation, but effectively enhance the persistent luminescence and thermo-luminescence of SrAl2O4: Eu^2+. Dy^3+ co-doping can help form electron traps with appropriate depth due to its suitable electro-negativity, and increase the density and depth of electron traps. Based on above observations, a persistent luminescence mechanism, electron transfer model, is proposed and illustrated. 相似文献
3.
The photoluminescence (PL) characteristics of Eu^3+ and Li^+ co-doped ZnO PL materials against heat-treatment temperature were discussed. The PL xerogel and powder samples were prepared by solgel process. The emission spectra of all samples showed two broad bands peaking at 590 nm and 620 nm under UV-Vis excitation. But the relative intensity of red PL (620 nm) was much greater than that of green PL (590 nm) of the same sample, that s to say, the red color was the main luminescence. With heat-treatment temperature increase, the two kinds of colors PL intensity decreased, and both the red and green PL intensity of the xerogel samples was much greater than those of powder samples respectively. The XRD patterns revealed that Eu^3+ ions were successfully incorporated in ZnO crystals in xerogel samples. When heat-treatment temperature reached 350 ℃, the Eu^3+ began to separate out of the ZnO crystals and Eu2O3 crystals came into being. When the powder sample was subjected to UV-Vis excitation, the energy transfered from the host ZnO emission to Eu^3+ became weaker than the xerogel sample. 相似文献
4.
Nano-spherical Co2+-doped FeS2 was synthesized through a simple solvothermal method. The products were investigated using XRD, FE-SEM, BET, ICP, EDS, TEM, HRTEM, XPS, and UV-vis spectroscopy. The results indicated that Co2+ ion could change the particle nucleation process and inhibited the particle growth of FeS2. In addition, when the content of doped Co2+ was 15%, the degradation efficiency of methylene blue (MB) achieved 60.72% after 210 min irradiation, which increased by 52.01% than that of the undoped FeS2. Moreover, comparison experiments also demonstrated that the M (M=Co2+, Co2+/Ni2+)-doped FeS2 photocatalytic activity efficiency sequence was Co2+ > Ni2+>Co2+/Ni2+. This is ascribed to the fact that the Co2+ doping could induce the absorption edge shifting into the visible-light region and increased the surface area of the samples. The effect mechanisms of M-doping on the band gap and the photocatalytic activity of FeS2 were also discussed. 相似文献
5.
To discuss the function of Eu and Dy and their interaction in Sr2MgSi2O7: Eu2+, Dy3+ long afterglow material, the Eu and Dy single doped and their co-doped Sr2MgSi2O7: Eu2+, Dy3+ were prepared. The samples were characterized by X-ray diffraction (XRD), decay curves, photoluminescence (PL), and thermoluminescence (TL). The results indicate that Sr2MgSi2O7: Eu has afterglow properties, and the doping of Eu ion in Sr2MgSi2O7: Eu2+, Dy3+ can lower the depth of traps. Eu ion can not only serve as luminescence center, but also produce traps in the matrix, meanwhile, it also exerts certain influences on the traps produced by Dy in Sr2MgSi2O7: Eu2+, Dy3+. The Dy ion can not act as luminescence center but relates to the change of the traps in the Sr2MgSi2O7 matrix. 相似文献
6.
Oxyfluoride glasses were developed with composition 60GeO 2 ·10AlF 3 ·25BaF 2 ·(1.95-x)GdF 3 · 3YbF 3 ·0.05TmF 3 ·xErF 3 (x=0.02,0.05,0.08,0.11,0.14,0.17)in mole percent.Intense blue(476 nm),green(524 and 546 nm)and red(658 nm)emissions which identified from the 1G 4 →3H 6 transition of Tm3+and the(2H 11/2 ,4S 3/2 )→4I 15/2 ,4F 9/2 →4I 15/2 transitions of Er3+,respectively,were simultaneously observed under 980 nm excitation at room temperature.The results show that multicolor luminescence including white l... 相似文献
7.
Yu Zhou ZhiJie Zhang YaoQing Chu YunFang Pan MingJiang You TingTing Zheng JiaYue Xu 《中国科学:技术科学(英文版)》2017,60(10):1473-1479
Eu3+-doped ZnMoO4 with different doping concentrations were synthesized by a hydrothermal method. The effects of Eu3+ doping on the phase structure and photoluminescence (PL) properties of ZnMoO4 were investigated. The result showed that the introduction of Eu3+ could lead to phase transition of ZnMoO4. With the increase of Eu3+ doping amount, β-ZnMoO4 was transformed to α phase gradually, which led to different photoluminescence performances. The optimized doping concentration of Eu3+ was 6 mol% for the highest emission intensity at 615 nm. Its CIE chromaticity coordinates were (0.667, 0.331), which were very close to the values of standard chromaticity (0.67, 0.33) for National Television Standards Committee (NTSC) system. Therefore, Eu3+-doped ZnMoO4 is considered to be a promising red-emitting phosphor for white LED applications. 相似文献
8.
韩晶 《武汉理工大学学报(材料科学英文版)》2011,26(3):398-402
A series of Eu0.5Tb0.5(TTA)3Phen/PMMA (TTA=thenoyltrifluoroacetone,Phen=phenanthroline) and Eu0.5Tb0.5(TTA)3Dipy/PMMA (Dipy=2,2’-dipyridyl) were prepared by in-situ polymerization.The structures of the composites were characterized by IR spectra and electron spectrum.Photoluminescence properties were investigated by UV-Vis spectra and fluorescence spectra.Meanwhile,the energy transfer models were set up.The results indicated that polymer parts were attached with the rare-earth molecular parts in the composi... 相似文献
9.
李艳红 《武汉理工大学学报(材料科学英文版)》2008,23(4):448-451
Nanocrystalline Gd1.77Yb0.2Er0.03O3 samples were prepared by combustion and precipitation methods. Structures and upconversion luminescence properties of samples were studied. The results of XRD show that all samples are cubic structure, the average crystallite size could be calculated as 23 nm and 39 nm, respectively. The lattice constants were obtained. The FT-IR spectra were measured to investigate the vibrational feature of the samples. Upconversion luminescence spectra of samples under 980 nm laser excitation were investigated. The strong red emission of samples were observed, and attributed to 4F9/2→4I152 transitions of Er^3+ ions, the emission intensity for sample synthesized by precipitation method is stronger compared to that of combustion method. The possible upconversion luminescence mechanisms in nanocrystalline Gd1.77Yb0.2Er0.03O3 were discussed. 相似文献
10.
The synthesis of Nd3+, Y3+:CaF2 nanopowder was conducted by azeotropic distillation method, which effectively dehydrated hydrous CaF2 and prevented forming hard agglomerates. X-ray diffraction (XRD), scanning electron microscopy (SEM), scanning calorimetries-thermalgravimetry (DSC-TG), Fourier transform infrared spectroscopy (FT-IR) and absorption spectroscopy were performed to characterize the powder properties. The experimental results showed that products obtained by azeotropic distillation were single phased, rather monodispersed, successfully prevented the hard agglomerate formation and effectively removed the residual water inside the as-prepared precipitate than that of the direct drying. The absorption spectra showed a wider and stronger absorption bands around 792 nm, which should be profitable for LD pumping. 相似文献
11.
Yuan Xi-ming Xu Yong-sheng Yu Jiang-bo Wang Yong-qian Wang Hong-mei 《武汉理工大学学报(材料科学英文版)》2003,18(1):41-43
Nano fluorescent powder of Y4Al2O9: Eu3+ was synthesized by sol-gel method. The XRD shows that the product prepared at 900°C is pure-phase Y4Al2O9: Eu3+. The Y4Al2O9 powder is nano-size crystal testified by BF and ED analysis of TEM. The grain diameter of Y4Al2O9 is in the range between 20 and 50nm, and its average is 30 nm. The luminescent spectra show that Eu3+ ious occupy two kinds of sites in Y4Al2O9 crystal lattice. One is in the strict inversion center, and the other is in off lying inversion center. When excited with
UV light (λ=254nm), Y4Al2O9: Eu3+ exhibits an orange emission bond at λ=590 nm due to the5Do→7F1 transition and a red emission band at λ=610 nm due to5Do→7F2 transition.
YUAN Xi-ming: Born in 1951
Funded by Key Scientific and Technological Project of Hubei Province (2001 AA102A03) 相似文献
12.
MeiYa Li Ling Pei Jun Liu BenFang Yu DongYun Guo XiaoHua Sun XingZhong Zhao 《中国科学E辑(英文版)》2008,51(11):1843-1849
Ferroelectric Bi3.25La0.75Ti3O12 (BLT) and Bi3.15Nd0.85Ti3O12 (BNT) thin films were fabricated on Pt/TiO2/SiO2/Si (100) substrates by a modified sol-gel technique. X-ray diffraction indicated that these films were of single phase with
random polycrystalline orientations. The surface morphologies of the films were observed by scanning electron microscope,
showing uniform, dense films with grain size of 50–100 nm. Well-saturated hysteresis loops of the films were obtained in metal-ferroelectric-metal
type capacitors with Cu top electrodes at an applied voltage of 400 kV/cm, giving the remanent polarization (2P
r) and coercive field (2E
c) values of the films of 25.1 μC/cm2 and 203 kV/cm for BLT, and 44.2 μC/cm2 and 296 kV/cm for BNT, respectively. Moreover, these capacitors did not show fatigue behaviors after up to 1.75×1010 switching cycles at the test frequency of 1 MHz, suggesting a fatigue-free character. The influences of the La3+ and Nd3+ doping on the properties of the films were comparatively discussed.
Supported by the National Key Basic Research and Development Program of China (Grant No. 2006CB932305) and the Natural Science
Foundation of Hubei Province, China (Grant No. 2004ABA082) 相似文献
13.
HONG Hanlie MIN Xinmin ZHOU Yong 《武汉理工大学学报(材料科学英文版)》2007,22(4):661-666
The surface properties of kaolinite were determined using density functional theory discrete variational method (DFT-DVM) and Gaussian 03 program. A SiO4 tetrahedral hexagonal ring with two A1 octahedra was chosen to model the kaolinite crystal. The total density of states of the kaolinite cluster are located near the Fermi level at both sides of the Fermi level. Both the highest occupied molecular orbit (HOMO) and the lowest unoccupied molecular orbit (LUMO) of kaolinite indicate that kaolinite system can not only readily interact with electron-acceptor species, but also readily interact with electron-donor species on the edge surface and the gibbsite layer surface, and thus, shows amphoteric behavior. Substitution of Al3^+ for Si4+ in the tetrahedral site linking the vacant Al3^+ octahedra does not increase the surface chemical reactivity of kaolinite, while substitution of Al3^+ for Si^4+ in the tetrahedral site with the apex O linking Al3^+ octahedra increase the surface chemical reactivity of the siloxane surface of kaolinite, especially acting as electron donors. Additionally, substitution of Al3^+. for Si^4+ in the tetrahedral site results in the re-balance of charges, leading to the increase of negative charge of the coordinated O atoms of the AlO4 tetrahedra, and therefore favoring the formation of ionic bonds between cations and the surface O atoms in the basal plane. 相似文献
14.
Amorphous La0.7Zn0.3MnO3 (LZMO) films were deposited on p+-Si substrates by sol-gel method at low temperature of 450 °C. The Ag/LZMO/p+-Si device exhibits invertible bipolar resistive switching and the R HRS/R LRS was about 104-106 at room temperature which can be kept over 103 switching cycles. Better endurance characteristics were observed in the Ag/LZMO/p+-Si device, the V Set and the V Reset almost remained after 103 endurance switching cycles. According to electrical analyses, the conductor mechanism was in low resistor state (LRS) governed by the filament conductor and in the high state (HRS) dominated by the traps-controlled space-charge-limited current (SCLC) conductor. 相似文献
15.
Red phosphor K2LiAlF6:Mn4+ has been synthesized by a cation-exchange method in HF solution. To optimize their optical properties, phosphors were synthesized using different reaction conditions. The K2LiAlF6:0.5%Mn4+ synthesized at 20°C for 4 h shows the highest luminescence intensity. The temperature-dependent emission intensity of the phosphor was investigated, and it was found to exhibit good thermal stability, making it a promising red phosphor candidate for warm WLEDs. 相似文献
16.
The Sm3+-doped SrO-Al2O3-SiO2 (SAS) glass-ceramics with excellent luminescence properties were prepared by batch melting and heat treatment. The crystallization behavior and luminescent properties of the glass-ceramics were investigated by DTA, XRD, SEM and luminescence spectroscopy. The results indicate that the crystal phase precipitated in this system is monocelsian (SrAl2Si2O8) and with the increase of nucleation/crystallization temperature, the crystallite increases from 66 % to 79 %. The Sm3+-doped SAS glass-ceramics emit green, orange and red lights centered at 565, 605, 650 and 715 nm under the excitation of 475 nm blue light which can be assigned to the 4G5/2→6 H j/2 (j=5, 7, 9, 11) transitions of Sm3+, respectively. Besides, by increasing the crystallization temperature or the concentration of Sm3+, the emission lights of the samples located at 565, 605 and 650 nm are intensified significantly. The present results demonstrate that the Sm3+-doped SAS glass-ceramics are promising luminescence materials for white LED devices by fine controlling and combining of these three green, orange and red lights in appropriate proportion. 相似文献
17.
Na2O-Al2O3-SiO2 glass-ceramics doped with Er3+ ions were synthesized by the conventional melt quenching technique at a low melting temperature. The samples were characterized by differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-vis-NIR scanning spectrophotometry, and fluorescence spectrometry. The results show that the main crystalline phase of glass-ceramics is nepheline.The best heat-treatment process is at 520 °C for 2 h. Because the up-conversion luminescence and near infrared luminescence properties of glass doped with Eu3+ are studied in detail. 相似文献
18.
The principal refractive indices and the thermal refractive index coefficients for Be3Al2Si6O18 crystal doped with 1.01wt% Cr2O3 have been accurately measured by the auto-collimation method at wavelengths of 0.488, 0.53975, 1.064, 1.0795 and 1.3414 μm,
and temperatures of 308.2, 328.6, 359.1 and 395.4 K respectively. Based on the measured results of principal indices of 0.488,
0.6328, 1.0795 and 1.3414μm, the Sellmeier’s equations and the thermal refractive index coefficients have been obtained, and
the result has been proven to be accurate by error analysis. 相似文献
19.
徐庆 《武汉理工大学学报(材料科学英文版)》2008,23(3):386-390
Ln0.6Sr0.4Co0.2Fe0.2O3 (Ln=La, Pr, Nd, Sm) perovskite-type complex oxides were synthesized using a glycine-nitrate process, and the structure, electrical conducting and thermal expansion properties of the resulting ceramics were examined with regard to the nature of the lanthanide cations. The results indicated that the La, Pr and Nd specimens had a rhombohedral symmetry, while an orthorhombic structure was determined for the Sm specimen. The pseudo-cubic lattice constant decreased with smaller lanthanide cations. It was found that the electrical conducting properties declined with decreasing lanthanide cation size. Fortunately, all the compositions remained rather high electrical conductivities exceeding 650 Ω ^-1m·cm^-1 in the intermediate temperature range (600-800 ℃). An appreciable thermal expansion increase at high temperatures was detected for all the compositions. Decreasing the size of the lanthanide cations resulted in an increase of thermal expansion. With respect to the high electrical conductivities, the Ln0.6Sr0.4Co0.8Fe0.2O3 oxides are considered to be acceptable as mixed conducting component in composite cathode designs together with doped ceria electrolytes. 相似文献
20.
Sm3(Fe,Ti)29Nx/α-Fe dual-phase nanometer magnetic material was fabricated through rapid solidification, crystallization and nitridation of Sm-Fe (Ti) alloy. The effect of combination of rapid solidification and Ti alloy addition on the phase formation and microstructure of the Sm-Fe alloy is investigated in this paper. The microstructure of amorphous phase and dual-phase nano-grain crystals before and after crystallization annealing were observed using a high-resolution transmission electron microscope (HREM). The dual-phase nano-grains after annealing were compacted together with a clear interface with the direct exchange-coupling mechanism. Different annealing processes were used to examine the melt-spun alloy. Comparison of the images of SEM showed that annealing at 750℃ for 10 min was most suitable to get homogeneous and nano-grains. No obvious kink was detected in the second quadrant of the hysteresis loop like a single hard magnet, and strong exchange coupling was found between hard magnets and soft magnets. 相似文献