首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
It is still challenging to design a robust and efficient tracking algorithm in complex scenes. We propose a new object tracking algorithm with adaptive appearance learning and occlusion detection in an efficient self-tuning particle filter framework. The appearance of an object is modeled with a set of weighted and ordered submanifolds, which can guarantee the adaptability when there is fast illumination or pose change. To overcome the occlusion problem, we use the reconstruction error data of the appearance model to extract occlusion region by graph cuts. And the tracking result is improved with feedback of occlusion detection. The motion model is also integrated with adaptability to overcome the abrupt motion problem. To improve the efficiency of particle filter, the number of samples is tuned with respect to the scene conditions. Experimental results demonstrate that our algorithm can achieve great robustness, high accuracy and good efficiency in challenging scenes.  相似文献   

3.
《Real》1997,3(6):415-432
Real-time motion capture plays a very important role in various applications, such as 3D interface for virtual reality systems, digital puppetry, and real-time character animation. In this paper we challenge the problem of estimating and recognizing the motion of articulated objects using theoptical motion capturetechnique. In addition, we present an effective method to control the articulated human figure in realtime.The heart of this problem is the estimation of 3D motion and posture of an articulated, volumetric object using feature points from a sequence of multiple perspective views. Under some moderate assumptions such as smooth motion and known initial posture, we develop a model-based technique for the recovery of the 3D location and motion of a rigid object using a variation of Kalman filter. The posture of the 3D volumatric model is updated by the 2D image flow of the feature points for all views. Two novel concepts – the hierarchical Kalman filter (KHF) and the adaptive hierarchical structure (AHS) incorporating the kinematic properties of the articulated object – are proposed to extend our formulation for the rigid object to the articulated one. Our formulation also allows us to avoid two classic problems in 3D tracking: the multi-view correspondence problem, and the occlusion problem. By adding more cameras and placing them appropriately, our approach can deal with the motion of the object in a very wide area. Furthermore, multiple objects can be handled by managing multiple AHSs and processing multiple HKFs.We show the validity of our approach using the synthetic data acquired simultaneously from the multiple virtual camera in a virtual environment (VE) and real data derived from a moving light display with walking motion. The results confirm that the model-based algorithm works well on the tracking of multiple rigid objects.  相似文献   

4.
Several algorithms have been introduced to render motion blur in real time by solving the visibility problem in the spatial-temporal domains. However, some algorithms render at interactive frame rates but have artifacts or noise. Therefore, we propose a new algorithm that renders real-time motion blur using extruded triangles. Our method uses two triangles in the previous frame and the current frame to make an extruded triangle then send it to rasterization. By using the standard rasterization, visibility determination is performed efficiently. To solve the occlusion between extruded triangles for a given pixel, we introduce a combination solution using a sorting in front-to-back order and bitwise operations in the spatial-temporal dimensions. This solution ensures that only non-occluded extruded triangles are shaded. We further improve performance of our algorithm using a coverage map.  相似文献   

5.
Occlusion reasoning is a fundamental problem in computer vision. In this paper, we propose an algorithm to recover the occlusion boundaries and depth ordering of free-standing structures in the scene. Rather than viewing the problem as one of pure image processing, our approach employs cues from an estimated surface layout and applies Gestalt grouping principles using a conditional random field (CRF) model. We propose a hierarchical segmentation process, based on agglomerative merging, that re-estimates boundary strength as the segmentation progresses. Our experiments on the Geometric Context dataset validate our choices for features, our iterative refinement of classifiers, and our CRF model. In experiments on the Berkeley Segmentation Dataset, PASCAL VOC 2008, and LabelMe, we also show that the trained algorithm generalizes to other datasets and can be used as an object boundary predictor with figure/ground labels.  相似文献   

6.
This research addresses the problem of noise sensitivity inherent in motion and structure algorithms. The motion and structure paradigm is a two-step process. First, we measure image velocities and, perhaps, their spatial and temporal derivatives, are obtained from time-varying image intensity data and second, we use these data to compute the motion of a moving monocular observer in a stationary environment under perspective projection, relative to a single 3-D planar surface. The first contribution of this article is an algorithm that uses time-varying image velocity information to compute the observer's translation and rotation and the normalized surface gradient of the 3-D planar surface. The use of time-varying image velocity information is an important tool in obtaining a more robust motion and structure calculation. The second contribution of this article is an extensive error analysis of the motion and structure problem. Any motion and structure algorithm that uses image velocity information as its input should exhibit error sensitivity behavior compatible with the results reported here. We perform an average and worst case error analysis for four types of image velocity information: full and normal image velocities and full and normal sets of image velocity and its derivatives. (These derivatives are simply the coefficients of a truncated Taylor series expansion about some point in space and time.) The main issues we address here are: just how sensitive is a motion and structure computation in the presence of noisy input, or alternately, how accurate must our image velocity information be, how much and what type of input data is needed, and under what circumstances is motion and structure feasible? That is, when can we be sure that a motion and structure computation will produce usable results? We base our answers on a numerical error analysis we conduct for a large number of motions.  相似文献   

7.
We investigate 3D shape reconstruction from measurement data in the presence of constraints. The constraints may fix the surface type or set geometric relations between parts of an object's surface, such as orthogonality, parallelity and others. It is proposed to use a combination of surface fitting and registration within the geometric optimization framework of squared distance minimization (SDM). In this way, we obtain a quasi-Newton like optimization algorithm, which in each iteration simultaneously registers the data set with a rigid motion to the fitting surface and adapts the shape of the fitting surface. We present examples to show the applicability of our method to constrained 3D shape fitting for reverse engineering of CAD models and to high accuracy fitting with kinematic surfaces, which include surfaces of revolution (reconstructed from fragments of archeological pottery) and spiral surfaces, which are fitted to 3D measurement data of shells. Our optimization algorithm can combine registration of multiple scans of an object and model fitting into a single optimization process which is shown to be superior to the traditional procedure, which first registers the data and then fits a model to it.  相似文献   

8.
Capturing the dynamics of articulated models is becoming increasingly important. Dynamics, better than geometry, encode the functional information of articulated objects such as humans, robots and mechanics. Acquired dynamic data is noisy, sparse, and temporarily incoherent. The latter property is especially prominent for analysis of dynamics. Thus, processing scanned dynamic data is typically an ill‐posed problem. We present an algorithm that robustly computes the joints representing the dynamics of a scanned articulated object. Our key idea is to by‐pass the reconstruction of the underlying surface geometry and directly solve for motion joints. To cope with the often‐times extremely incoherent scans, we propose a space‐time fitting‐and‐voting approach in the spirit of RANSAC. We assume a restricted set of articulated motions defined by a set of joints which we fit to the 4D dynamic data and measure their fitting quality. Thus, we repeatedly select random subsets and fit with joints, searching for an optimal candidate set of mobility parameters. Without having to reconstruct surfaces as intermediate means, our approach gains the advantage of being robust and efficient. Results demonstrate the ability to reconstruct dynamics of various articulated objects consisting of a wide range of complex and compound motions.  相似文献   

9.
This paper describes a novel solution to the rigid point pattern matching problem in Euclidean spaces of any dimension. Although we assume rigid motion, jitter is allowed. We present a noniterative, polynomial time algorithm that is guaranteed to find an optimal solution for the noiseless case. First, we model point pattern matching as a weighted graph matching problem, where weights correspond to Euclidean distances between nodes. We then formulate graph matching as a problem of finding a maximum probability configuration in a graphical model. By using graph rigidity arguments, we prove that a sparse graphical model yields equivalent results to the fully connected model in the noiseless case. This allows us to obtain an algorithm that runs in polynomial time and is provably optimal for exact matching between noiseless point sets. For inexact matching, we can still apply the same algorithm to find approximately optimal solutions. Experimental results obtained by our approach show improvements in accuracy over current methods, particularly when matching patterns of different sizes.  相似文献   

10.
Data acquisition in large‐scale scenes regularly involves accumulating information across multiple scans. A common approach is to locally align scan pairs using Iterative Closest Point (ICP) algorithm (or its variants), but requires static scenes and small motion between scan pairs. This prevents accumulating data across multiple scan sessions and/or different acquisition modalities (e.g., stereo, depth scans). Alternatively, one can use a global registration algorithm allowing scans to be in arbitrary initial poses. The state‐of‐the‐art global registration algorithm, 4PCS, however has a quadratic time complexity in the number of data points. This vastly limits its applicability to acquisition of large environments. We present Super 4PCS for global pointcloud registration that is optimal, i.e., runs in linear time (in the number of data points) and is also output sensitive in the complexity of the alignment problem based on the (unknown) overlap across scan pairs. Technically, we map the algorithm as an ‘instance problem’ and solve it efficiently using a smart indexing data organization. The algorithm is simple, memory‐efficient, and fast. We demonstrate that Super 4PCS results in significant speedup over alternative approaches and allows unstructured efficient acquisition of scenes at scales previously not possible. Complete source code and datasets are available for research use at http://geometry.cs.ucl.ac.uk/projects/2014/super4PCS/ .  相似文献   

11.
This paper presents a novel framework for elliptical weighted average (EWA) surface splatting with time‐varying scenes. We extend the theoretical basis of the original framework by replacing the 2D surface reconstruction filters by 3D kernels which unify the spatial and temporal component of moving objects. Based on the newly derived mathematical framework we introduce a rendering algorithm that supports the generation of high‐quality motion blur for point‐based objects using a piecewise linear approximation of the motion. The rendering algorithm applies ellipsoids as rendering primitives which are constructed by extending planar EWA surface splats into the temporal dimension along the instantaneous motion vector. Finally, we present an implementation of the proposed rendering algorithm with approximated occlusion handling using advanced features of modern GPUs and show its capability of producing motion‐blurred result images at interactive frame rates.  相似文献   

12.
Learning spatial models from sensor data raises the challenging data association problem of relating model parameters to individual measurements. This paper proposes an EM-based algorithm, which solves the model learning and the data association problem in parallel. The algorithm is developed in the context of the the structure from motion problem, which is the problem of estimating a 3D scene model from a collection of image data. To accommodate the spatial constraints in this domain, we compute virtual measurements as sufficient statistics to be used in the M-step. We develop an efficient Markov chain Monte Carlo sampling method called chain flipping, to calculate these statistics in the E-step. Experimental results show that we can solve hard data association problems when learning models of 3D scenes, and that we can do so efficiently. We conjecture that this approach can be applied to a broad range of model learning problems from sensordata, such as the robot mapping problem.  相似文献   

13.
A new algorithm for 3D head tracking under partial occlusion from 2D monocular image sequences is proposed. The extended superquadric (ESQ) is used to generate a geometric 3D face model in order to reduce the shape ambiguity during tracking. Optical flow is then regularized by this model to estimate the 3D rigid motion. To deal with occlusion, a new motion segmentation algorithm using motion residual error analysis is developed. The occluded areas are successfully detected and discarded as noise. Furthermore, accumulation error is heavily reduced by a new post-regularization process based on edge flow. This makes the algorithm more stable over long image sequences. The algorithm is applied to both synthetic occlusion sequence and real image sequences. Comparisons with the ground truth indicate that our method is effective and is not sensitive to occlusion during head tracking.  相似文献   

14.
This paper proposes an algorithm which uses image registration to estimate a non‐uniform motion blur point spread function (PSF) caused by camera shake. Our study is based on a motion blur model which models blur effects of camera shakes using a set of planar perspective projections (i.e., homographies). This representation can fully describe motions of camera shakes in 3D which cause non‐uniform motion blurs. We transform the non‐uniform PSF estimation problem into a set of image registration problems which estimate homographies of the motion blur model one‐by‐one through the Lucas‐Kanade algorithm. We demonstrate the performance of our algorithm using both synthetic and real world examples. We also discuss the effectiveness and limitations of our algorithm for non‐uniform deblurring.  相似文献   

15.
We present a novel framework for motion segmentation that combines the concepts of layer-based methods and feature-based motion estimation. We estimate the initial correspondences by comparing vectors of filter outputs at interest points, from which we compute candidate scene relations via random sampling of minimal subsets of correspondences. We achieve a dense, piecewise smooth assignment of pixels to motion layers using a fast approximate graphcut algorithm based on a Markov random field formulation. We demonstrate our approach on image pairs containing large inter-frame motion and partial occlusion. The approach is efficient and it successfully segments scenes with inter-frame disparities previously beyond the scope of layer-based motion segmentation methods. We also present an extension that accounts for the case of non-planar motion, in which we use our planar motion segmentation results as an initialization for a regularized Thin Plate Spline fit. In addition, we present applications of our method to automatic object removal and to structure from motion.  相似文献   

16.
Finding trajectories of feature points in a monocular image sequence   总被引:16,自引:0,他引:16  
Identifying the same physical point in more than one image, the correspondence problem, is vital in motion analysis. Most research for establishing correspondence uses only two frames of a sequence to solve this problem. By using a sequence of frames, it is possible to exploit the fact that due to inertia the motion of an object cannot change instantaneously. By using smoothness of motion, it is possible to solve the correspondence problem for arbitrary motion of several nonrigid objects in a scene. We formulate the correspondence problem as an optimization problem and propose an iterative algorithm to find trajectories of points in a monocular image sequence. A modified form of this algorithm is useful in case of occlusion also. We demonstrate the efficacy of this approach considering synthetic, laboratory, and real scenes.  相似文献   

17.
Object tracking in the presence of appearance variation and occlusion is a hot topic in research, many algorithms were proposed in recent years. Early contour tracking algorithms used particle filter in a high dimensional space. In practice, contour points can move independently, hence contour deformation forms a high dimensional deformation space. As a result, the application of particle filter is calculation expensive. In this paper, we address the problem of tracking contour in complex environments by involving subspace and a contour template. Specifically, our algorithm tracks the global motion and the local contour deformation separately. We track the global motion by weighted distance to subspace, which is adaptive to the complex environment variation by incremental learning, and then use contour model to track local deformation and evolve the contour to the edge points. The experimental results show that our method can track object contour undergoing partially occlusion and shape deforming, which verify the effectiveness of the proposed algorithm.  相似文献   

18.
Iterative point matching for registration of free-form curves and surfaces   总被引:41,自引:3,他引:38  
A heuristic method has been developed for registering two sets of 3-D curves obtained by using an edge-based stereo system, or two dense 3-D maps obtained by using a correlation-based stereo system. Geometric matching in general is a difficult unsolved problem in computer vision. Fortunately, in many practical applications, some a priori knowledge exists which considerably simplifies the problem. In visual navigation, for example, the motion between successive positions is usually approximately known. From this initial estimate, our algorithm computes observer motion with very good precision, which is required for environment modeling (e.g., building a Digital Elevation Map). Objects are represented by a set of 3-D points, which are considered as the samples of a surface. No constraint is imposed on the form of the objects. The proposed algorithm is based on iteratively matching points in one set to the closest points in the other. A statistical method based on the distance distribution is used to deal with outliers, occlusion, appearance and disappearance, which allows us to do subset-subset matching. A least-squares technique is used to estimate 3-D motion from the point correspondences, which reduces the average distance between points in the two sets. Both synthetic and real data have been used to test the algorithm, and the results show that it is efficient and robust, and yields an accurate motion estimate.  相似文献   

19.
For many vision-based systems, it is important to detect a moving object automatically. The region-based motion estimation method is popular for automatic moving object detection. The region-based method has several advantages in that it is robust to noise and variations in illumination. However, there is a critical problem in that there exists an occlusion problem which is caused by the movement of the object. The occlusion problem results in an incorrect motion estimation and faulty detection of moving objects. When there are occlusion regions, the motion vector is not correctly estimated. That is, a stationary background in the occluded region can be classified as a moving object.In order to overcome this occlusion problem, a new occlusion detection algorithm is proposed. The proposed occlusion detection algorithm is motivated by the assumption that the distribution of the error histogram of the occlusion region is different from that of the nonocclusion region. The proposed algorithm uses the mean and variance values to decide whether an occlusion has occurred in the region. Therefore, the proposed occlusion detection and motion estimation scheme detects the moving regions and estimates the new motion vector, while avoiding misdetection caused by the occlusion problem. The experimental results for several video sequences demonstrate the robustness of the proposed approach to the occlusion problem.This work was presented in part at the 8th International Symposium on Artificial Life and Robotics, Oita, Japan, January 24–26, 2003  相似文献   

20.
In this paper we present a method to compute the egomotion of a range camera using the space envelope. The space envelope is a geometric model that provides more information than a simple segmentation for correspondences and motion estimation. We describe a novel variation of the maximal matching algorithm that matches surface normals to find correspondences. These correspondences are used to compute rotation and translation estimates of the egomotion. We demonstrate our methods on two image sequences containing 70 images. We also discuss the cases where our methods fail, and additional possible methods for exploiting the space envelope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号