首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2000年,在美国纽约举行了粉末冶金技术会议(PM2TEC)。顾问编辑Ken Brooks对这次会议钨方面的论文作了重点报道。W-Cu合金 美国霍普金斯大学在会上介绍了“机械合金化在球磨法制造W-Cu合金材料中的作用”。W-Cu合金可在电子学领域用作散热件,在核聚变堆中用作换向板,在军械中用作弹头(药形罩)。采用机械合金化和烧结工艺,可制取晶粒细、密度高(理论密度 的97%)的W-Cu复合材料(80W/20Cu wt%,58W/42Cu at%)。由于W与Cu在固相和液相完全不互溶,所以常规工艺不能采用。尽管二者不互溶,但通过强力研磨可获得纳米级粉末,从而降低…  相似文献   

2.
纳米多孔金属具有特殊的力学、热学、光学、电学和化学性能,尤其是其特殊的结构已经受到越来越多科研工作者的广泛关注。纳米多孔金属的结构决定了其性能,因此研究纳米多孔金属孔结构的粗化方法非常有意义。综述了纳米多孔金属孔结构的粗化方法,包括制备过程中的粗化、热退火粗化、酸溶液处理粗化、碱溶液处理粗化、盐溶液处理粗化及其他粗化方法。最后对纳米多孔金属的粗化中存在的问题进行了探讨。  相似文献   

3.
通过X射线衍射和透射电镜分析等手段,研究了W80Cu20(不互溶合金)在机械合金化过程中的固溶合金化和纳米化行为。结果发现,Cu固溶在W中,并形成了置换固溶体。  相似文献   

4.
盖逸冰  唐法威  侯超  吕皓  宋晓艳 《金属学报》2020,56(7):1036-1046
基于第一性原理界面模型对W-Cu复合材料体系中W/Cu相界、W晶界和Cu晶界的溶质偏聚行为进行了系列计算分析,定量化研究了W-Cu体系中多类界面的键合特征和Sc、Ti、Y、In等多种合金化元素的界面偏聚特点。结合W-Cu体系的偏聚能和电子结构计算,揭示了W-Cu体系中同种合金化元素在晶界偏聚和相界偏聚过程中可能存在的显著差异及其微观机理。通过W-Y和W-Sc体系中合金化元素添加结果的对比分析,阐述了强偏聚元素与界面稳定性之间的关联。进一步,结合晶界偏聚能、相界偏聚能、铜基固溶体形成能等计算,提出了W-Cu复合材料体系筛选溶质元素的基本判据,从原子尺度上为研究多相复合体系的合金化元素优选策略提供了普适性分析方法,同时为高性能W-Cu基复合材料的研发提供了新的设计思路。  相似文献   

5.
采用新型机械合金化-放电等离子烧结(MA-SPS)技术制备纳米结构Cu/C自润滑复合材料。利用XRD、DSC、TEM分析机械合金化粉末和SPS烧结样品的相组成和微观结构。结果表明,球磨24h后,Cu-C不互溶体系形成了纳米晶铜、非晶碳和纳米结构过饱和固溶体等亚稳相。SPS烧结后,Cu/C复合材料仍保持纳米结构。MA-SPS的双重活化机制,使粉末的烧结活性大大提高,在600℃烧结3min即可获得致密的纳米结构Cu/C复合材料。  相似文献   

6.
W-Cu合金已广泛用于大型电接触器和抗电弧电极中。W-Cu合金具有超热处理性能和高微波吸收能力,它由Cu渗透烧结或W-Cu粉末混合液相烧结制取。利用机械合金化(MA)的纳米晶(NC)W-Cu粉在相对低温下由液相烧结已制取了近全密度的W-Cu合金,但其固相烧结过程中致密化的机理尚不清楚。韩国咸阳大学利用膨胀分析法研究了W-Cu固相烧结机理,这对研究其烧结过程中致密化动力学十分有利。 研究用W粉纯度99.9%,尺寸4.8μm,Cu粉纯度99.5%,尺寸50.4μm。先将W、Cu粉按比例在混料机上混合2h,把20g W-30%Cu(质量分数)粉装入有数个φ4.5mm钢…  相似文献   

7.
采用复杂多级方法研究并证实制备具有亚微米/纳米级内部结构的球形W-Cu复合微粉的可能性。首先,采用等离子体化学合成法制备具有核壳结构的W-Cu纳米粉末(W核及Cu壳)。然后,将W-Cu纳米粉末与蔗糖的水悬浮液进行喷雾干燥,形成25~63μm的微粒,收率为50%。最后,用热等离子体射流处理由纳米粉末组成的微粒,形成致密的球形W-Cu颗粒。成品粉末的球化度为90%~95%,体积密度为8.1 g/cm3,流动性约为12 s/50 g,杂质中O、C和H的含量(质量分数)分别为0.7%、0.02%~0.2%和0.03%~0.05%。  相似文献   

8.
W-Cu复合材料制备新技术与发展前景   总被引:2,自引:1,他引:1  
范景莲  刘涛  朱松  田家敏 《硬质合金》2011,28(1):56-65,72
W-Cu复合材料具有热膨胀系数低、导电性好、导热性好、高熔点、高硬度以及良好的抗电弧烧蚀性能,在机械加工、电气工程以及电子信息领域被广泛用作电极材料、电接触材料、电子封装材料及靶材等越来越受到国内外的关注。传统粉末冶金方法制备的W-Cu复合材料致密度低、组织结构粗大且均匀性差,严重影响材料性能。采用纳米复合新技术制备的W-Cu复合材料具有很大的技术优势:粉末纳米化使得粉末的烧结活化能大大降低,其烧结活化能在1 420℃时仅为42.1 kJ/mol和29.1 kJ/mol,远低于纯W相同温度范围内的587.9 kJ/mol,同时纳米复合使得W与Cu发生了固溶,从而使得复合粉末表现出良好的烧结活性。采用纳米复合制备的细晶W-Cu复合材料具有非常优异的综合性能,其原因在于经烧结后获得高的致密度和组织结构均匀细小。  相似文献   

9.
利用X射线衍射仪、扫描电子显微镜和透射电子显微镜研究了机械合金化制备的具有纳米相复合结构的Al-Pb互不溶体系中Pb相的粗化动力学和添加Cu对其粗化的影响。结果表明在573、623、673和723 K退火不同时间后,尽管Al-Pb纳米相复合结构合金中组成相的尺寸均在纳米量级,Pb相的平均颗粒尺寸与退火时间之间仍满足三次方定律。Pb相的粗化激活能为84.80 kJ/mol,此值接近于基体Al的晶界自扩散激活能。这表明Pb相的粗化受晶界扩散控制。添加Cu降低了Pb相的粗化速率,这与Cu在Al和Pb相的界面偏聚,降低了Al/Pb的界面能有关。添加Cu后,Pb相的长大激活能增加。  相似文献   

10.
采用溶胶凝胶法对AlN粉体进行表面覆W后,将其与适量W粉混合,经压制、预烧结,制得多孔AlN/W骨架,再熔渗Cu后制备出不同AlN含量(0~8%)的AlN/W-Cu复合材料。考察了AlN含量对于烧结体微观组织、力学性能和热学性能的影响,并与由未覆钨AlN粉体制备的AlN/W-Cu复合材料进行对比。结果表明,采用溶胶凝胶法可在AlN颗粒表面均匀制备覆W层,其界面结合良好。覆钨AlN/W-Cu复合材料的相对密度、硬度、抗拉强度以及热导率均优于未覆钨AlN/W-Cu复合材料的。AlN/W-Cu复合材料的相对密度、抗拉强度及热导率随AlN含量的增加而降低,而硬度随AlN含量的增加而上升。当AlN含量为2%时,覆钨AlN/W-Cu复合材料的综合性能最佳,相对密度达到97.69%,显微硬度达到277HV,热导率达到205.54 W/(m·K)。  相似文献   

11.
在不同腐蚀介质中研究了化学及电化学去合金化Mn-Cu合金制备纳米多孔铜(NPC)条件及其形貌演化规律.结果表明,腐蚀介质对纳米多孔铜形成有显著影响,酸性强弱会直接改变孔径大小,在酸性更弱的有机酸中由于配合物的形成,在表面获得规则球状结构.Mn-Cu合金去合金化演化行为研究显示区域腐蚀、均一多孔演化以及多孔结构粗化构成整个去合金化过程.此外,进一步研究发现电化学电位同样对纳米多孔形貌影响显著,-0.2 V及0V可选择性腐蚀掉Mn原子,形成均一多孔结构,而0.2 V下Mn、Cu原子的共同溶解导致非多孔形貌的产生.  相似文献   

12.
通过离子束溅射辅助沉积技术(IBSAD)制备了掺杂Cu元素的Pt基催化膜电极,并对电极进行了退火处理.利用EDS及XRD检测了电极的成分及结构,通过循环伏安法测试电极的析氢活性.结果表明:掺杂Cu的膜电极中形成了PtCu合金固溶体,且参与合金化的程度随退火温度而变化,显示退火温度是影响PtCu金属合金化的关键因素;经400℃退火的试样电极的交换电流密度较原样提升约11.6%,析氢峰电位降低,说明金属Cu参与到Pt基催化剂的合金化过程能有效提高催化性能.  相似文献   

13.
磁控溅射法制备W-Cu薄膜的研究   总被引:2,自引:2,他引:0  
陈文革  张剑  熊斐  邵菲 《表面技术》2012,41(4):42-45
采用W70Cu30单靶磁控溅射与纯W、纯Cu双靶磁控共溅两种工艺,在多种基材上制备W-Cu薄膜,分析了薄膜的宏观形貌和组织结构.分析结果表明:单靶磁控溅射时,控制靶电压520 V,溅射电流0.8~1.2A,Ar气流量25 mL/min(标准状态),可在玻璃基体上镀得W-Cu薄膜,但退火时如温度过高,会使W和Cu两种元素原子偏聚加重;双靶磁控溅射时,控制Ar气流量20 mL/min(标准状态),Cu靶电流0.7A,W靶电流1.2A,溅射时间3600 s,可在硅基和玻璃基上镀得W-Cu薄膜,但在石墨基体、陶瓷基体及45钢基体上的镀膜效果不理想.  相似文献   

14.
Nb合金化γ—TiAl的氧化热力学理论分析   总被引:3,自引:0,他引:3  
利用亚点阵的准亚规则溶体模型计算了Ti-Al-Nb三元系合金热力学活度,根据金属氧化反应用热力学计算了相应的Ti/TiO和Al/Al2O3的平衡分压。讨论了Nb合金化γ-TiAl金属间化合物热力学活度和氧化反应的氧平衡分压的影响。计算的热力学活度与Knudsen池隙透法测定的规律相符。由Nb合金化γ-TiAl的热力学活度以及氧化反应的氧平衡分压变化不能判定Ti-Al-Nb三元系合金生成氧化物种类及其稳定性。单纯的热力学因素不足以解释Nb合金化改善γ-TiAl坑高温氧化性能的机理。  相似文献   

15.
利用X射线衍射仪、扫描电子显微镜和透射电子显微镜研究了机械合金化制备的具有纳米相复合结构的Al-Pb互不溶体系中Pb相的粗化动力学和添加Cu对其粗化的影响。结果表明在573、623、673和723 K退火不同时间后,尽管Al-Pb纳米相复合结构合金中组成相的尺寸均在纳米量级,Pb相的平均颗粒尺寸与退火时间之间仍满足三次方定律。Pb相的粗化激活能为84.8 kJ/mol,此值接近于基体Al的晶界自扩散激活能。这表明Pb相的粗化受晶界扩散控制。添加Cu降低了Pb相的粗化速率,这与Cu在Al和Pb相的界面偏聚,降低了Al/Pb的界面能有关。添加Cu后,Pb相的长大激活能增加。  相似文献   

16.
采用冷辊旋凝凝固法制备Ag含量为15at%的Ag-Cu二元合金薄带。在5wt%硝酸溶液中,通过去合金法制备纳米多孔银。利用X射线衍射仪(XRD)与扫描电镜(SEM)分析纳米多孔银的相组成和微观形貌。研究了Ag-Cu合金腐蚀温度以及腐蚀时间对纳米多孔Ag微观结构及形貌的影响。结果表明:初始合金薄带是由α-Cu(Ag)相与中间相ζ-Ag2Cu相组成。去合金后得到的合金薄带中ζ-Ag2Cu相和α-Cu(Ag)相完全消失,仅剩fcc-Ag相;随着腐蚀时间的延长,腐蚀介质从合金表面逐渐渗透到内部,使得纳米孔洞/韧带结构特征尺寸逐渐均匀;而去合金化温度由30℃升高到90℃,Ag原子表面扩散率随之增大,活性组元的腐蚀速率加快,获得纳米孔洞结构所需的时间缩短,并且结构更均匀化。90℃进行试验最佳,节能省时。  相似文献   

17.
采用快速凝固与去合金化相结合的方法制备纳米多孔铜,用XRD、SEM分析样品的相组成和微观形貌,研究前驱体AlCu合金成分对纳米多孔铜微观结构及Al2Cu、AlCu协同性腐蚀的影响.结果表明:Cu原子分数为33%时,去合金化后形成具有双连续结构的纳米多孔铜;Cu原子分数为38%时,形成比表面积更高、更均匀细小的双连续结构纳米多孔铜,平均孔径尺寸约100 ~ 150 nm,平均系带尺寸约50 ~ 80 nm;Cu原子分数为43%时,形成了双连续结构的纳米多孔铜并在其中分散着纳米颗粒聚集体;Cu原子分数为50%时,形成了纳米颗粒聚集的纳米多孔铜.实验发现,Al2Cu、AlCu腐蚀的协同作用对双连续结构的形貌有重要的影响.  相似文献   

18.
通过对铸态、热轧态、固溶态等不同初始组织状态的Cu4Mn6合金进行自腐蚀去合金化制备纳米多孔铜块体材料,研究了合金初始组织对去合金化过程、孔形成和孔微观结构的影响。采用XRD、SEM、EDS等分析了样品腐蚀前后的相组成、微观形貌和元素含量。结果表明,合金初始组织对去合金化过程和孔结构具有重要的影响,固溶态合金是制备成分纯净、结构均匀的纳米多孔金属的最佳前驱体。铸态和热轧态合金由于Cu元素分布不均,构成贫铜区和富铜区,不利于去合金化过程的进行,腐蚀后形成由纳米孔伴有微米孔的双级孔径结构,而固溶态合金由于其初始组织成分均匀,利于Mn元素的选择性溶解和Cu元素的重组,完成去合金化所需时间最短,Mn残留量最低,去合金化后可形成孔径均匀的三维连通纳米多孔结构。  相似文献   

19.
WCu10型纳米复合粉的压制与烧结行为研究   总被引:1,自引:0,他引:1  
杨迎新 《硬质合金》2007,24(3):158-161
本文对用化学方法制备的WCu10型低Cu含量W-Cu纳米复合粉末进行了压制和烧结性能方面的研究,与传统W-Cu混合粉相比较,发现该粉末具有其特殊的性质。要达到相同的压坯密度,纳米复合粉所需要的压制压力要大的多,几乎是常规W与Cu混合粉所需压力的2.5倍。而由于粉末本身高的氧含量和低的Cu含量,需在很高的烧结温度下才能达到致密化。  相似文献   

20.
以Mg89Sn11(二元合金)为前驱体合金,在腐蚀介质中通过去合金化方法成功制备了纳米片阵列和纳米颗粒形貌的多孔锡。通过调整腐蚀介质和腐蚀时间研究了纳米多孔锡的形貌结构以及去合金化程度的影响因素。结果表明,在酸性腐蚀介质中去合金化,能够获得双连续结构的纳米多孔锡结构。其中,在0.1%H3PO4溶液中,孔壁由不连续的纳米球颗粒堆积而成,而在0.1mol/L HCl溶液中,孔壁为纳米片结构,形成了纳米片阵列的多孔锡;而在中性的NaCl溶液中,同样成功制备出了均匀的纳米片状阵列多孔锡。在5%的NaCl中,随着去合金化时间的延长,多孔形貌从均匀的纳米片阵列多孔转变为团簇状的纳米多孔形貌。去合金化1h时,表面形成了均匀的纳米片阵列多孔结构,6h后表面开始生成不连续的团簇状多孔形貌,并最终演化为连续起伏的片状纳米锡多孔结构,其孔径平均尺寸保持在50nm。通过对去合金化工艺进行调整,制备了不同形貌的纳米多孔锡结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号