首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
热轧09CuPRE钢的流变应力模型   总被引:1,自引:0,他引:1  
高永生  刘淑春 《钢铁》1994,29(11):30-33
以现场生产的09CuPRE等五个钢种为研究对象,进行了流动应力的实验研究,通过对其热力学特性的分析,建立了金属塑性变形流动应力数学模型。为金属变形过程中的力学分析及计算机在线控制提供了理论依据。  相似文献   

2.
徐有容  罗德信 《钢铁》1995,30(3):33-38
用热模拟试验机在1150 ̄850℃变形温度、60 ̄0.1s^-1变形速率条件下对10Ti钢做恒温单道次压缩实验。得到变形激活能420KJ/mol,应力指数12和峰值前流变应力数学模型及临界应变、流变应力、峰值应力与Z参数关系。随变形温度升高,应变速率下降,晶粒大小呈上升趋势。得到动态再结晶晶粒大小与Z参数关系。  相似文献   

3.
在800~1 000℃温度范围内,利用Gleeble-3800热模拟试验机对LNG用高锰钢进行应变速率为10/s的高温拉伸试验,研究了不同拉伸温度对流变应力及断裂机制的影响,建立了流变应力、应变速率及拉伸温度之间的本构方程。结果表明:断后试样的断面收缩率随着拉伸温度的升高而增加,而流变应力随之降低,由530 MPa降至312 MPa;断口韧窝的尺寸和深度随着温度的升高而增大,呈现晶界滑移和MnS、TiN、Al2O3等夹杂物脱落两种形貌。在应变速率为10/s、800~1 000℃温度范围内,LNG用高锰钢的热变形本构方程为■,且该方程模型与实测值吻合程度较高。  相似文献   

4.
本文简要回顾了LZ50钢车轴及钢坯的化学成分以及晶粒度控制的进展,并根据目前技术发展情况,提出了国内车轴钢的生产工艺的发展趋势。  相似文献   

5.
在Gleeble-1500D热模拟试验机上采用等温压缩试验研究了高锰奥氏体Fe-25Mn-3Si-3AlTWIP钢在变形温度为900~1100℃,变形速率为0.01~1s。条件下的热变形行为。研究结果表明,Fe-25Mn-3Si-3Al钢热变形流变应力曲线呈现明显的动态再结晶特征,出现了一个明显的流变应力峰值,峰值之后...  相似文献   

6.
 利用Thermecmastor-Z热模拟实验机,得到了Fe16Mn0.6C TWIP钢在变形温度850~1150℃,应变速率0.03~30s-1条件下热压缩变形的真应力应变曲线。进而研究了变形温度、应变速率对Fe16Mn0.6C流变应力和临界动态再结晶行为的影响规律。结果表明,850~1150℃范围内Fe16Mn0.6C热变形的峰值应力随温度的升高而降低,随着应变速率的增大而升高;且在应变速率为0.03 s-1和30 s-1出现明显的应力峰值,材料发生了动态再结晶。最后采用线性回归方法计算出Fe16Mn0.6C的高温变形流变应力本构方程,得出热变形激活能为469kJ/mol;并通过应变硬化速率与流变应力曲线求出了该钢种动态再结晶临界条件与Z参数之间的关系。  相似文献   

7.
文章研究了修正的Johnson-Cook(m-JC)本构模型对304奥氏体不锈钢高温流变行为的表征能力。利用不同温度、应变和应变速率等温热压缩试验的试验真应力-应变数据来计算本构模型的材料常数,建立了关于304奥氏体不锈钢的m-JC本构模型。通过比较预测结果的相关系数、平均相对误差以及均方差,评估了模型的适用性。结果表明,修正的JC模型预测结果和试验结果之间的平均相对误差绝对值为6.77%,相关系数为0.987,均方差为11.2 MPa, m-JC本构模型可以较为准确的描述304奥氏体不锈钢的流变行为。  相似文献   

8.
利用Gleeble-1500D热模拟试验机对Cu-Cr-Zr-Ce合金在变形温度为600~800℃、应变速率为0.01~5 S-1条件下进行了热压缩试验,测定了其应力-应变曲线,并通过光学显微镜观察了其热压缩过程中的微观组织.结合两者分析了动态回复和再结晶机制.结果表明,动态再结晶是该合金软化的主要机制.  相似文献   

9.
基于摩擦修正的TB6合金流变应力行为研究及本构模型建立   总被引:1,自引:0,他引:1  
TB6合金是一种高强高韧近β钛合金。采用Gleeble-3500热模拟试验机对铸态TB6钛合金进行了等温热压缩变形试验,变形温度范围为700~900℃,应变速率范围为0.001~1.000 s-1,研究了铸态TB6合金热变形流变应力行为,分析了热压缩后的金相显微组织,基于摩擦修正后的流变应力曲线采用双曲正弦形式的修正Arrhenius关系对TB6钛合金的本构模型进行回归。结果表明:铸态TB6合金的热变形行为对变形温度和应变速率较为敏感,随着变形温度的降低和应变速率的增加流变应力显著增大;其热变形机制以动态回复和动态再结晶为主;得到铸态TB6钛合金热变形本构方程,比较回归模型计算的应力值与实测值其平均相对误差仅为1.48%,因此采用Z参数的双曲正弦函数形式能够较为精确地预测铸态TB6合金高温变形时的流变应力。以上研究为TB6钛合金塑性加工过程的模拟和控制提供了理论基础。  相似文献   

10.
采用MMS-300热模拟实验机研究纯钼在变形温度为900~1 300℃和应变速率为0.004~1 s-1条件下的高温塑性变形行为。分析了纯钼流变应力与应变速率、变形温度之间的关系,计算了纯钼高温塑性变形时的变形激活能。研究结果表明:纯钼在热变形过程中流变应力随应变速率的增加而增加,随温度的升高而降低,且其高温塑性变形行为可以用Zener-Hollomon参数的流变应力方程进行描述。该纯钼在实验条件范围内发生了明显的动态回复与动态再结晶。  相似文献   

11.
12.
董方  宿成  张寄东 《钢铁》2011,46(9):59-63
 利用Gleeble-1500D热模拟试验机对钒、钛、铌微合金化Q345B低合金高强度结构钢(HSLA)进行了高温单道次压缩试验。测量了不同变形温度和变形速率下该钢的变形行为,分析了各变形参数对该钢动态再结晶和变形抗力的影响,得出动态再结晶激活能为451.47kJ/mol。并且建立了高温变形抗力的分段函数流变模型,该模型计算结果与试验值吻合较好。  相似文献   

13.
对均匀化炉冷态7085铝合金进行高温压缩实验,研究该合金在变形温度为350~450℃、变形速率为0.001~0.1 s 1和应变量为0~0.6条件下的流变应力及软化行为。结果表明:流变应力在变形初期随着应变的增加而迅速增大,出现峰值后逐渐软化进入稳态流变;随着变形温度的升高和应变速率的降低,峰值流变应力降低。采用包含Zener-Hollomon参数的Arrhenius双曲正弦关系描述合金的流变行为。分析和建立了应变量与本构方程参数(激活能、应力指数和结构因子)的关系,研究发现本构方程参数随应变量的增加而减少。合金的流变行为差异与动态回复再结晶和第二相粒子相关。  相似文献   

14.
通过不同热加工参数下的热压缩试验,研究了新型阀门钢5Cr9Si3的高温变形行为.5Cr9Si3钢在850~900℃和1000~1100℃温度区间内峰值应力分别随温度的升高而减小,而在900~1000℃温度区间内出现峰值应力随温度升高而增大的异常现象.进一步的微观组织及相结构演化分析表明:5Cr9Si3钢在900~1000℃温度区间内发生了由铁素体向奥氏体的转变,产生奥氏体相变强化;同时,随着变形温度的提高,碳化物的回溶造成碳元素和铬元素对5Cr9Si3基体固溶强化效果增强.相变强化和固溶强化是导致5Cr9Si3在900~1000℃温度区间内流变应力异常变化的主要原因.  相似文献   

15.
《钢铁钒钛》2021,42(4):47-51,72
提出了一种包含流变软化的本构的构建方法。通过采用圆柱体试样的热压缩模拟试验,在塑性应变速率为0.1 s-1和20 s-1之间时,观察到TC4钛合金在750~950℃范围内均存在流变应力随着塑性应变降低的流变软化现象。采用双Voce方程对试验数据拟合得到了大塑性变形条件下的稳定流变应力。采用LevenbergMarquardt非线性拟合算法得到了TC4钛合金包含流变软化的本构方程。并且发现Levenberg-Marquardt非线性拟合算法求得的本构方程参数比线性拟合误差更小。结果表明文中提出的流变应力计算方法规避了变形不稳定区域对特征变形抗力判断的干扰,得到了符合指数函数的材料高温稳定流变本构模型,在新型金属材料热加工工艺开发中具有较强的应用价值。  相似文献   

16.
7085铝合金热变形的流变应力行为和显微组织   总被引:1,自引:0,他引:1  
采用Gleeble-1500热模拟机进行热压缩实验,研究7085铝合金在变形温度为350~470℃、应变速率为0.001~1 s?1条件下的流变应力变化规律和变形后的显微组织。研究表明:7085铝合金的流变应力随应变速率增大而增大,随变形温度升高而减小。该合金热压缩变形的流变应力行为可用双曲正弦形式的本构方程描述为ε=A[sinh(ασ)]nexp(?Q/RT),也可用Zener-Hollomon参数来描述,其参数A、α、n以及热变形激活能Q分别为2.722 54×1011s?1、0.016 03 MPa?1、6.259以及176.58 kJ/mol。随着温度升高和应变速率降低,合金的主要软化机制由动态回复逐渐转变为动态再结晶。  相似文献   

17.
在应变速率为0.01~10.00 s-1、变形温度为700~850℃的条件下,通过热压缩实验研究Cu-Ag合金的高温流变行为,发现该合金高温流变应力对温度和应变速率比较敏感,且在不同条件下呈现的软化特征也有区别。通过双曲正弦本构方程和线性回归分析,得到了不同变形条件下,关于结构因子、材料参数、以及热变形激活能的6次多项式方程,从而建立了随材料参数变化的Cu-Ag合金流变应力本构模型。根据动态材料模型(DMM)建立功率耗散图和失稳图,并通过叠加得到Cu-Ag合金的热加工图,然后,利用热加工图确定了该合金的加工安全区和流变失稳区。分析可知Cu-Ag合金的最佳变形工艺参数主要处于3个区间:低温低应变速率区(变形温度为700~770℃,应变速率为0.0100~0.0316 s-1),该区域的峰值功率耗散系数η为0.46;高温中应变速率区(变形温度为780~835℃,应变速率为0.1~1.0 s-1),该区域的峰值功率耗散系数η为0.33;和高温高应变速率区(变形温度为835~850℃,应变速率为3.162~10.000 s-1),该区域的功率耗散系数η峰值为0.33。  相似文献   

18.
16Mn钢热变形流变应力模型及晶粒大小   总被引:2,自引:0,他引:2  
利用热变模拟试验装置,在850-1150℃变形温度,0.1-60 s^-1变形速率条件下,16Mn钢单道次压缩试验得到热变形的流变应力模型为a=4.4^e0.158 e^7.22×10^-5T exp(4383/T)形变激活能Q为366 kj/mol,应力指数n为9.56。>900℃出现明显的动态再结晶,应力一应变曲线呈单峰状;<850℃出现动态回复。流变应为a、峰值应为ap、再结晶晶粒大小与Z参数呈线性关系a(c=0.2)=3.67Z^0.098;an=2.9Z^0.11;Dr=1.5.13Z^-0.046。  相似文献   

19.
基于摩擦修正的TB8合金热压缩流变应力行为分析   总被引:2,自引:0,他引:2  
采用Gieeble-1500热模拟试验机对TB8(Ti-15Mo-2.7Nb-3Al-0.2Si)合金进行了等温热压缩变形试验,温度范围为750-1100℃,应变速率范围为0.01~1s-1.在热压缩过程中由于摩擦影响导致流变应力不能真实反映材料的高温变形行为.采取一种简便的方法对实验数据进行了摩擦修正,研究了TBS合金热变形流变应力行为,并对合金的变形机制进行了初步探讨.结果表明:热压缩过程中摩擦对于流动应力的影响十分显著,采取的修正方法降低了实验中摩擦引起的误差;TB8合金的热变形行为具有高度的变形温度和应变速率敏感性,随着变形温度的提高和应变速率的降低,真应力显著降低;动态回复和动态再结晶是TB8高温变形时主要软化机制.  相似文献   

20.
在Oleeble-1500热模拟机上,对5083铝合金进行高温等温压缩热模拟,分析了流变应力与应变速率、变形温度之间的关系和高温变形的内在机理,同时血对合金元素对流变应力的影响进行了分析。结果表明:在应变速率为0.01s^-1、0.1s^-1、1s^-1(400℃、450℃)和0.01s^-1(350℃),其流变应力出现明显的峰值应力,表现出连续动态冉结品特征;在0.1s^-1、1s^-1(350℃),表现为稳态流变,为动态回复。采用双曲正弦形式的Arrhenius关系来描述5083铝合金高温变形时的流变应力,获得5083的材料常数A、α、n和Q分别为0.06918s^-1、0.01002MPa^-1、3.2819和149.67kJ/mol。在不同的应变率比值下计算应变率敏感(SRS)系数(m=dlnσ/dlnε),发现随着温度升高,应变增大,m值增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号