首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了实现建材行业的“碳达峰、碳中和”目标,使用工业钙质原料和硅质原料在1 350℃制备了一种低钙固碳胶凝材料,研究了不同CO2浓度养护对低钙固碳胶凝材料碳化程度和碳化后性能的影响,并通过X射线衍射(XRD)、傅里叶红外光谱分析(FT-IR)、热重分析(TG)、扫描电子显微镜(SEM)、电子探针(EPMA)等测试手段进行了低钙固碳胶凝材料碳化后的产物分析、微观分析和机理分析。结果表明,随着CO2浓度的提高,低钙固碳胶凝材料的碳化程度和抗压强度显著提高,当CO2浓度为99.99%(体积分数)时,低钙固碳胶凝材料碳化8 h后的抗压强度为132.2 MPa,与CO2浓度为25%时相比,抗压强度提高了260%。  相似文献   

2.
碳矿化材料是由固碳胶凝材料通过与CO2在常规环境下的碳化反应快速形成以碳酸钙为主要基体组成的复合材料,是实现工业烟气CO2建材化利用的重要技术途径。本工作以γ-C2S为固碳胶凝材料,研究了Fe掺杂、壳聚糖引入、养护制度设计3种复合增强措施对碳矿化材料力学性能与产物组成的影响规律。结果表明,不同的增强措施并非简单的叠加效应,也存在矛盾关系,其中,可以获得超高强度的组别有:Fe–γ-C2S+壳聚糖引入的碳矿化材料在养护24 h后抗压强度达到200 MPa以上,壳聚糖引入组可以在延长养护时间后获得更高的强度上限,养护7 d后抗压强度可达约230MPa。Fe–γ-C2S组的碳酸钙晶型以方解石为主,而长期CO2养护下的γ-C2S组则为文石相组成。不同的产物组成也是影响强度增长的重要因素,由此提出超高强碳矿化材料的理想结构模型:壳聚糖存在于硅凝胶与碳酸钙之间,连接两相,方解石生长于内部,文石包裹于外部。方解石为碳矿化体养护早期提供强度,文石则在外...  相似文献   

3.
在“双碳”背景下,碳化硬化型胶凝材料的研究为水泥行业实现碳中和提供了较好的思路。本文采用工业钙质和硅质原料制备γ-C2S,探究CO2浓度、CO2压力、碳化湿度、碳化时间等因素对γ-C2S碳化性能的影响,明确最佳碳化制度,并通过XRD和电子扫描探针等测试,对γ-C2S碳化机理进行深入分析。结果表明,工业原材料制备的γ-C2S的抗压强度和固碳量随碳化养护时间、碳化养护湿度、CO2浓度的增大而增大,碳化养护8h抗压强度可达155.8MPa,固碳量达16.96wt.%。  相似文献   

4.
黄浩  王涛  方梦祥 《化工进展》2019,38(10):4363-4373
CO2矿化养护技术利用早期成型后的混凝土材料和CO2之间的碳酸化反应和产物沉积过程实现产品力学强度等特性的提升,主要关注的是预养护/早期水化成型后的混凝土中胶凝成分和CO2之间的矿化反应(即加速碳酸化)。此过程中胶凝材料的水化过程不再是强度形成的主要反应,因此为了充分实现矿化成型和CO2固定,实现环境效益最大化,研究者近几年积极开发具有CO2矿化潜力的碱金属矿物材料,并探究其反应后对于混凝土微观结构和性能的促进效应。本文综述了CO2矿化养护技术在新型混凝土材料方面的研究进展,分别对传统混凝土采用的水化活性硅酸钙材料、水化惰性硅酸钙材料、镁基水泥材料以及工业固废材料等进行了具体介绍,比较了在不同材料与CO2反应特性以及养护后建材制品性能优化方面的最新成果,并对CO2矿化养护技术的后续发展进行了展望。主要建议:一是着眼于微观反应机制和矿物材料特性,开发有效的矿化反应强化方法;二是开发水化惰性的低钙硅比硅酸钙材料;三是将工业固废资源化与矿化养护技术结合,实现固废和气废利用流程耦合,推进特定工艺开发和装置研发。  相似文献   

5.
为开发γ-C2S不锈钢渣碳储存的潜力,最大限度地提高不锈钢渣的综合利用率。通过研究主要碳化参数(如液固比、成型压力、CO2分压)对不锈钢渣碳化性能的影响规律来评估不锈钢渣的CO2储存能力,以期能够提供更佳的不锈钢渣碳化过程。利用XRD、SEM/EDS、DSC/TG分析对不锈钢渣碳化产物组成及微观形貌进行表征,并探索其碳化机理。结果表明,较佳碳化参数为成型压力为2.50 MPa,液固比为10%,CO2分压为0.3 MPa。较佳碳化条件下每千克不锈钢渣可固化储存CO2气体约123.6 g。不锈钢渣碳化过程以γ-C2S碳化反应为主,碳化产物中出现了片状、颗粒状的CaCO3,随碳化时间延长,晶体逐渐长大为团簇状。因此,利用不锈钢渣储备碳及制备碳化制品是可行的。  相似文献   

6.
钢渣水化活性差,体积安定性不良限制了其作为辅助性胶凝材料的应用,但钢渣具有很好的碳酸化活性。本文在对钢渣进行预处理的过程中通过调整CO2浓度及碳酸化时间,调控钢渣的碳酸化程度,分析了碳酸化对钢渣微观结构及固碳效果的影响,同时评价了碳酸化钢渣作为辅助性胶凝材料的可行性。结果表明:含30%(质量分数)钢渣的水泥砂浆试块3、28 d抗压强度较未掺钢渣水泥砂浆分别降低了43.2%和30.0%,净浆试块经压蒸试验后由于膨胀过大而溃散;CO2浓度对钢渣的固碳量有显著的影响,高浓度(体积分数为99.9%)CO2进行碳化养护3 min时钢渣固碳量就达到了3.67%。钢渣的体积安定性与碳酸化程度呈正相关,而过度碳酸化处理会降低其水化活性,掺加30%(质量分数)碳酸化预处理3、10 min钢渣的砂浆3 d抗压强度较掺加30%原始钢渣的砂浆分别提高了28.3%和15.8%。  相似文献   

7.
为揭示碳化作用对镁质胶凝材料微观结构演变过程的影响,通过扫描电镜(SEM)、X射线衍射(XRD)和压力试验机,对室内养护5 a龄期的镁质胶凝材料净浆试样和30 a龄期的镁质胶凝材料房梁试样进行分析。结果表明,碳化作用对镁质胶凝材料的微观形貌和物相组成影响较大。空气中的二氧化碳由表及里渗入镁质胶凝材料中,在二氧化碳渗入的过程中引起镁质胶凝材料微观形貌和物相组成的变化。镁质胶凝材料的微观形貌主要由针棒状、多孔状向块状转变,物相由5·1·8[5Mg(OH)2·MgCl2·8H2O]相经2·1·1·6[2MgCO3·Mg(OH)2·MgCl2·6H2O]相最终转化为稳定的水菱镁矿和菱镁矿。由于碳化作用,镁质胶凝材料5 a龄期的抗压强度相比1 a龄期下降了22.1 MPa。因此,需要采用隔离方法处理镁质胶凝材料,以减少其碳化作用,延长其使用年限。  相似文献   

8.
为实现燃煤固体废弃物和捕集后CO2的资源化利用,以煤基废弃物燃煤灰渣、脱硫石膏为主要原料,以矿渣为补充胶凝材料,研究了固废配比、矿化养护压力、矿化养护温度对加气混凝土抗压强度和CO2固定率的影响。通过XRD、SEM分析了不同矿化养护制度下的晶相结构和微观形貌,通过压汞法研究了不同养护工况对加气混凝土孔隙结构的影响。结果表明,合适的剩余水灰比有助于提高加气混凝土的CO2固定率和早期抗压强度;CO2养护压力由0.05 MPa上升至1.00 MPa时,加气混凝土的固碳率提高24.8%,抗压强度先上升后降低,养护压力在0.1 MPa时达到峰值;CO2养护温度由25℃上升至105℃时,加气混凝土固碳率和抗压强度先上升后下降,固碳率在45℃时达到最大值7.21%,抗压强度在65℃时达最大值3.53 MPa;通过XRD和SEM分析可知,主要矿化产物为碳酸钙,并以方解石和球霰石的形态存在,较高养护压力(≥0.2 MPa)易导致产物界面出现细微裂缝,而随养护温度升高,矿化产物与水化产物同时出现;...  相似文献   

9.
磷酸盐胶凝材料力学性能好,制备工艺简单,为资源化利用铜渣提供了新的途径。本文以铜渣和磷酸二氢钠(NaH2PO4)为原料制备了磷酸盐胶凝材料,采用电子万能试验机、X射线粉末衍射仪及扫描电子显微镜研究了原料配合比和养护条件对铜渣基磷酸盐胶凝材料抗压强度、物相和微观形貌的影响,并采用同步热分析仪考察了磷酸盐胶凝材料的热稳定性。结果表明,原料配合比对磷酸盐胶凝材料的力学性能和微观结构有重要影响,适当提高养护温度有利于强度发展。当NaH2PO4/铜渣质量比为0.30、水/(NaH2PO4+铜渣)质量比为0.15、60℃下养护7 d时,铜渣基磷酸盐胶凝材料抗压强度高达54.70 MPa。铜渣基磷酸盐胶凝材料优异的力学性能源自铜渣中铁橄榄石(Fe2SiO4)与NaH2PO4反应生成的致密无定形结构相。铜渣基磷酸盐胶凝材料热稳定性较好,空气气氛下467℃开始被氧化分解,无定形结构相发生...  相似文献   

10.
我国作为煤炭大国,燃烧化石燃料产生大量CO2。通过化学作用将CO2转化为能源燃料、基础化学品或高分子材料,有利于实现碳氧资源综合利用。从CO2直接利用和间接利用的角度出发,分别综述了CO2资源化利用研究进展。直接利用方面,重点阐述了CO2直接加氢合成甲醇和乙醇;同时CO2可作为羰化剂合成有机碳酸酯和高分子材料,包括碳酸二乙酯、聚碳酸酯和CO2基可降解聚合物。在间接利用方面,重点综述了CO2经碳酸乙烯酯的酯交换反应合成碳酸二甲酯,以及碳酸乙烯酯加氢制备甲醇联产乙二醇的研究进展。CO2加氢直接合成甲醇催化剂主要包括铜基催化剂、贵金属催化剂,由于贵金属的成本高,廉价的Cu基催化剂研究较为广泛。CO2加氢直接合成乙醇研究较广泛的催化剂为贵金属(Rh、Pd、Ru)基催化剂体系,还需进一步研究廉价、高活性和高稳定性的催化剂。CO2与乙醇直接合成碳酸二乙酯(DEC)研究较多的催化剂为铈基多相催化剂,但由于生成物中水分的影响,限制了DEC的收率。环氧化物和CO2耦合反应生成DEC过程中不产生水,可以有效克服热力学的限制,因此高能化合物与CO2的耦合路线是高效制备DEC的有效途径。CO2与环氧化物共聚制备聚碳酸酯材料多采用稀土三元催化剂体系,环氧化物的转化率和聚碳酸酯选择性较高,目前已经实现工业应用。CO2通过碳酸乙烯酯与甲醇酯交换合成DMC,多使用碱性较强的催化剂和含碱性基团的离子交换树脂。CO2经碳酸乙烯酯加氢制备甲醇和乙二醇的反应中,铜基催化剂展现出优异的催化性能。CO2化学转化利用是CO2碳氧资源综合利用的重要途径,将有效支撑我国未来碳中和目标实现。  相似文献   

11.
电石渣作为一种工业废渣,其碱度较高,综合利用率较低。为了解决过量的电石渣,利用电石渣的强碱性,研究了电石渣对矿渣胶凝体系的碱激发性能。利用电石渣碳化反应可生成碳酸钙的特性,探索了不同碳化制度对电石渣碱激发矿渣胶凝体系的性能影响规律。结果表明:大掺量电石渣对矿渣胶凝材料有很好的碱激发效果,生成大量的C-(A)-S-H凝胶,而复掺粉煤灰和偏高岭土胶凝体系性能最佳;电石渣-矿渣复合胶凝体系经过不同碳化制度处理后,胶凝体系力学性能有效提升;使用CO2气体作为外部碳化源,材料基体表层生成致密结构,基体力学性能提升;使用尿素作为内部碳化源,基体内部碳化均匀,胶凝体系力学性能提升。  相似文献   

12.
本文提出了一类改性碱激发矿渣胶凝材料,通过在原材料中掺入额外的钙、铝质矿相(Ca(OH)2和γ-Al2O3),促进材料基体中的Friedel's盐(F盐)在氯离子存在条件下的形成,进而提升胶凝材料的氯离子固化能力。本研究探讨了钙、铝质矿物含量对碱矿渣反应产物组成、氯离子固化量以及力学性能的影响。结果表明,钙、铝质矿相的额外补充可显著提高胶凝材料的氯离子固化能力,同时体系的m(Ca)/m(Al)与该能力的相关性较高。物相分析结果表明,钙质矿相的补充使得反应产物中拥有富余的Ca(OH)2,在氯盐侵蚀作用下,富余的Ca(OH)2全部转化为F盐或其他物相,证实了体系氯离子固化能力的增强得益于F盐的形成,即得益于化学固氯能力的提升。抗压强度测试结果,表明钙质矿物的掺入对力学性能存在一定负面影响,而铝质矿相的掺入则能够在一定程度上弥补强度损失。  相似文献   

13.
本文以两种硅铝质工业固废为反应前驱体,氢氧化钠和水玻璃作为碱激发剂制备低碳胶凝材料。借助响应面法研究硅铝质材料掺量、氢氧化钠和水玻璃掺量对胶凝材料力学性能的影响规律,并利用X射线衍射仪和扫描电子显微镜对水化产物进行矿物组成分析和微观形貌表征。结果表明:硅铝质前驱体含量、氢氧化钠和水玻璃添加量及硅铝质材料掺量和水玻璃掺量之间的交互作用对胶凝材料强度均有显著影响;优化得出的胶凝材料最佳配伍为硅铝质工业固废1掺量30%,硅铝质工业固废2掺量70%,氢氧化钠掺量6%,液体水玻璃掺量12%,胶凝材料28 d强度可达53.13 MPa;氢氧化钠和水玻璃的加入会增加基体材料的碱性,使得反应前期前驱体内部充分解聚,存在更多溶解态Al2O3和SiO2,反应后期缩聚成为C-A-S-H和C-S-H凝胶体,使胶凝材料具备强度。研究成果可用于制备低碳胶凝材料,减少天然黏土采掘,降低建筑材料领域的碳排放,助推双碳目标顺利实现。  相似文献   

14.
CO2捕集、利用与封存(CCUS)技术作为应对全球气候与环境危机的重要技术手段受到重视。利用水泥基材料的矿化反应吸收CO2不仅可实现CO2永久封存,改善产品力学性能,还能减少混凝土中水泥用量,从而减少大量CO2排放。以OPC浆体为原材料,系统性研究不同因素(温度、CO2添加量和CaCO3掺杂量)对水泥固碳性能及力学性能的影响,并测试分析了矿化产物的组成、微观形貌及微观孔结构,总结了温度、CO2与CaCO3对OPC净浆矿化过程的相互影响机制,并归纳了外加碳酸钙下二氧化碳矿化OPC浆体的微观反应过程模型。结果表明,70℃下固碳率为77.99%,28 d强度提升6.7%,CO2最佳添加量为0.5%,添加CaCO3能提高OPC浆体的固碳率和强度,CaCO3添加量为10%时,CO2掺量可增至3%,同时保持强度增益。  相似文献   

15.
赵锦波  卞凤鸣 《化工进展》2022,41(Z1):524-535
针对CO2排放这一全球性问题,我国明确2030年碳达峰、2060年碳中和的战略目标。发展高效CO2化学转化技术是推进该战略目标实现的关键。通过CO2化学利用技术可将廉价无用的温室效应气体转化为具有极高经济价值的重要化工产品,但目前仅有少数技术可以实现工业化应用。在此背景下,本文从CO2利用技术的转化方式出发,阐述了各技术的基本原理,总结了国内外相关团队在CO2化学利用技术基础与应用研究中的进展(包括CO2加氢技术、CO2甲烷重整、CO2酯化反应、CO2矿化利用),指出了目前CO2化学利用技术研究所面临的挑战。最后,本文展望了各种CO2化学利用技术的发展方向,并提出了发展建议。  相似文献   

16.
温室效应引起的全球变暖已经影响到人类的生存和发展,CO2减排刻不容缓。CO2矿物碳酸化作为一种CO2减排技术,受到越来越多的关注。相对于传统天然矿化原料,碱性工业固废具有反应速率快、碳酸化效率更高、能耗低等特点,并且利用碱性工业固废进行CO2矿化还可以产出高附加值产物用于化工、建筑等领域。本文主要综述了碱性工业固废的矿化机理,利用碱性工业固废(粉煤灰、钢渣、电石渣)进行CO2碳酸化的研究进展及吸收-矿化一体化(IAM)技术。对于以碱性工业固废为原料的碳酸化技术,未来应进一步加强机理和生命周期影响评价的研究并优化工艺流程;针对IAM工艺今后应开发出高效、经济的吸收剂和封存能力更好的矿化原料,并加强对IAM工艺反应机理的研究。  相似文献   

17.
采用Al2O3和MgO同时掺杂改性的方法制备了CaO-Ca3Al2O6-MgO复合钙基高温吸附CO2材料。复合钙基材料孔隙发达,活性物相为CaO,惰性骨架物相为Ca3Al2O6和MgO。Ca3Al2O6/MgO质量比偏小的材料,表面微粒粒径较小。在10%(体积分数,下同)CO2和90% N2的混合气气氛下,采用热重分析仪测量了复合钙基材料吸附CO2容量、碳化反应速率以及循环碳化(670℃)/煅烧(900℃)过程的稳定性。结果发现,复合钙基材料CaO-Ca3Al2O6-MgO具有较好的吸附CO2性能,提高Ca3Al2O6/MgO质量比,合成材料的循环稳定性较好;降低Ca3Al2O6/MgO质量比,合成材料的碳化反应速率加快,CaO转化率提高。最后,通过对不同循环次数下复合钙材料的比表面积、孔径分布、微观形貌、表面元素分布,晶相、晶粒大小进行研究分析,对合成材料的失活以及掺杂物质对烧结的抑制机理进行了讨论。  相似文献   

18.
CCUS是指CO2捕集、利用和封存,是解决全球气候变暖、控制CO2排放的重要技术手段,CO2驱油是CO2利用的主要形式之一。本文阐述了CO2混相驱、非混相驱和近混相驱的驱油机理、影响因素及国内外发展简况,系统整理并归纳了国内外CO2防气窜及提高波及体积技术,重点介绍了水气交替技术、化学封窜剂、CO2泡沫驱、碳化水驱和增稠的CO2驱,包括基本做法、封气窜原理、研究进展等,探讨了CO2驱油过程中存在的问题及解决对策,为碳中和背景下非常规油气的绿色开发提供理论指导和技术支持。  相似文献   

19.
固废利用是实现“双碳”目标的重要途径之一。本文以固废CaF2污泥为水泥掺合料,通过抗压强度、浆体流动度试验探讨了CaF2污泥掺量对水泥胶凝材料性能的影响,并结合XRD、SEM及TGA-DSC等微观表征测试进行机理分析。结果表明,CaF2污泥的掺加有利于提高水泥胶凝材料的早期强度,CaF2污泥掺量为8%(质量分数)的胶凝材料抗压强度表现较好。CaF2污泥的掺加会导致浆体流动度降低,但掺量低于10%(质量分数)时对浆体流动度影响并不显著,掺量为8%、10%(质量分数)时浆体流动度比未掺加CaF2污泥时降低了3.0%。CaF2污泥在胶凝材料中主要起物理效应,CaF2污泥能够形成更多的结晶位点,促进水泥水化。CaF2污泥掺量增加使水泥的稀释效应及团聚效应显著。掺量为8%(质量分数)的CaF2污泥复合水泥的微观性能较好。  相似文献   

20.
在“双碳”目标的背景下,明确碳处理路径至关重要。利用可再生能源制得的氢,将二氧化碳(CO2)通过甲烷化反应制备合成天然气(SNG)被广泛认为是一种高效、有前景的碳捕集利用技术,有望实现碳循环利用。近年来,二氧化碳甲烷化催化剂及相关反应机理均取得了许多新进展。鉴于此,本工作对该反应进行了系统的综述。首先,介绍了CO2甲烷化反应的热力学研究中不同反应条件的影响;随后从活性金属、载体、制备方法及辅助技术等四方面介绍了CO2甲烷化催化剂的研究进展,其中活性组分包括非贵金属基(Ni,Fe,Co和Mo)和贵金属基(Ru,Rh,Pt和Pd),载体包括传统氧化物(Al2O3,SiO2,TiO2,ZrO2和CeO2)和新型载体材料(金属有机框架和碳基材料),催化剂制备方法包括传统制备方法(浸渍法、共沉淀法、水热法、溶胶-凝胶法和固相合成法)和合成辅助技术(超声波、微波和等离子体等);总结了CO2  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号