首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Aims

The present study evaluated the utility of xenon computed tomography (Xe-CT) as a noninvasive diagnostic procedure for the measurement of hepatic tissue blood flow (TBF) in patients with nonalcoholic fatty liver disease (NAFLD) or chronic hepatitis C (CH-C).

Methods

Xe-CT was performed in 93 patients with NAFLD and in 109 patients with CH-C. Subjects were classified into one of three groups, based on fibrosis stage: group 1, no bridging fibrosis; group 2, bridging fibrosis; and group 3, liver cirrhosis. Correlations between hepatic TBFs in each fibrosis stage were examined.

Results

In group 1, portal venous TBF (PVTBF), hepatic arterial (HATBF), and total hepatic TBF (THTBF) were significantly lower in patients with in nonalcoholic steatohepatitis (NASH) than in those with CH-C (p < 0.001, p < 0.05, p < 0.001, respectively). In group 2, PVTBF and THTBF were significantly lower in patients with in NASH than in those with CH-C (p < 0.001, p < 0.05, respectively). In group 3, hepatic TBFs were not significantly different when comparing patients with NASH and those with CH-C.

Conclusions

PVTBF decreased due to fat infiltration. Therefore, hemodynamic changes occur relatively earlier in NAFLD than in CH-C. Patients with NASH should be monitored carefully for portal hypertensive complications in the early fibrosis stage.  相似文献   

2.
Fibrates, including fenofibrate, are a class of hypolipidemic drugs that activate peroxisome proliferator-activated receptor α (PPARα), which in-turn regulates the expression of lipid and lipoprotein metabolism genes. We investigated whether fenofibrate can reduce visceral obesity and nonalcoholic fatty liver disease via adipose tissue PPARα activation in female ovariectomized (OVX) C57BL/6J mice fed a high-fat diet (HFD), a mouse model of obese postmenopausal women. Fenofibrate reduced body weight gain (−38%, p < 0.05), visceral adipose tissue mass (−46%, p < 0.05), and visceral adipocyte size (−20%, p < 0.05) in HFD-fed obese OVX mice. In addition, plasma levels of alanine aminotransferase and aspartate aminotransferase, as well as free fatty acids, triglycerides, and total cholesterol, were decreased. Fenofibrate also inhibited hepatic lipid accumulation (−69%, p < 0.05) and infiltration of macrophages (−72%, p < 0.05), while concomitantly upregulating the expression of fatty acid β-oxidation genes targeted by PPARα and decreasing macrophage infiltration and mRNA expression of inflammatory factors in visceral adipose tissue. These results suggest that fenofibrate inhibits visceral obesity, as well as hepatic steatosis and inflammation, in part through visceral adipose tissue PPARα activation in obese female OVX mice.  相似文献   

3.
Background: Metformin is commonly used to treat gestational diabetes mellitus. This study investigated the effect of maternal metformin intervention during obese glucose-intolerant pregnancy on the gonadal white adipose tissue (WAT) of 8-week-old male and female mouse offspring. Methods: C57BL/6J female mice were provided with a control (Con) or obesogenic diet (Ob) to induce pre-conception obesity. Half the obese dams were treated orally with 300 mg/kg/d of metformin (Ob-Met) during pregnancy. Gonadal WAT depots from 8-week-old offspring were investigated for adipocyte size, macrophage infiltration and mRNA expression of pro-inflammatory genes using RT-PCR. Results: Gestational metformin attenuated the adiposity in obese dams and increased the gestation length without correcting the offspring in utero growth restriction and catch-up growth caused by maternal obesity. Despite similar body weight, the Ob and Ob-Met offspring of both sexes showed adipocyte hypertrophy in young adulthood. Male Ob-Met offspring had increased WAT depot weight (p < 0.05), exaggerated adipocyte hyperplasia (p < 0.05 vs. Con and Ob offspring), increased macrophage infiltration measured via histology (p < 0.05) and the mRNA expression of F4/80 (p < 0.05). These changes were not observed in female Ob-Met offspring. Conclusions: Maternal metformin intervention during obese pregnancy causes excessive adiposity, adipocyte hyperplasia and WAT inflammation in male offspring, highlighting sex-specific effects of prenatal metformin exposure on offspring WAT.  相似文献   

4.
Aims: The aim of the present study is to investigate the differential expression of CD44, CD47 and c-met in ovarian clear cell carcinoma (OCCC), the correlation in their expression and their relationship with the biological behavior of OCCC. Methods: We used immunohistochemistry to examine the expression of CD44, CD47 and c-met in OCCC (86 cases) and investigated the effects of the expression and interaction of these molecules on the development of OCCC. Results: CD44, CD47 and c-met expression was significantly high in OCCC. Expression of CD44 and CD47 correlated with patient surgical stage, chemotherapy resistance and prognosis (all p < 0.05), and expression of c-met correlated with chemotherapy resistance and prognosis (all p < 0.05), but did not correlate with lymph node metastasis (all p > 0.05). The surgical stage, CD44, CD47 and c-met expression were independent risk factors for OCCC prognosis (all p < 0.05). Patients with low levels of CD44, CD47 and c-met showed better survival than those with high levels (all p < 0.05). There was a positive correlation between CD44 (or CD47) and c-met, as well as between CD44 and CD47 (the Spearman correlation coefficient rs was 0.783, 0.776 and 0.835, respectively, all p < 0.01). Additionally, pairwise correlation analysis of these three markers shows that the high expression of CD44/CD47, CD44/c-met and CD47/c-met were correlated with patient surgical stage, chemotherapy resistance and prognosis (all p < 0.05), but did not correlate with lymph node metastasis (all p > 0.05). Conclusions: Expression of CD44, CD47 and c-met was upregulated in OCCC and pairwise correlation. CD44, CD47 and c-met may have synergistic effects on the development of OCCC and are prognostic factors for ovarian cancer.  相似文献   

5.
Methionine restriction reduces animal lipid deposition. However, the molecular mechanism underlying how the body reacts to the condition and regulates lipid metabolism remains unknown. In this study, a feeding trial was performed on rice field eel Monopterus albus with six isonitrogenous and isoenergetic feeds that included different levels of methionine (0, 2, 4, 6, 8, and 10 g/kg). Compared with M0 (0 g/kg), the crude lipid and crude protein of M. albus increased markedly in M8 (8 g/kg) (p < 0.05), serum (total cholesterol, triglyceride, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and non-esterified free fatty acids), and hepatic contents (hepatic lipase, apolipoprotein-A, fatty acid synthetase, total cholesterol, triglyceride, and lipoprteinlipase). However, in the serum, very-low-density lipoprotein and hepatic contents (hormone-sensitive triglyceride lipase, Acetyl CoA carboxylase, carnitine palmitoyltransterase, and mirosomal triglygeride transfer protein) decreased markedly in M8 (p < 0.05). The contents of hepatic C18:2n-6, C22:6n-3, and n-3PUFA in the M8 group were significantly higher than those in M0 (p < 0.05), and the contents of lipid droplets in M8 were higher than those in M0. Compared with M0, the hepatic gcn2, eif2α, hsl, mttp, ldlrap, pparα, cpt1, and cpt2 were remarkably downregulated in M8, while srebf2, lpl, moat2, dgat2, hdlbp, srebf1, fas, fads2, me1, pfae, and icdh were markedly upregulated in M8. Moreover, hepatic SREBP1 and FAS protein expression were upregulated significantly in M8 (p < 0.01). In short, methionine restriction decreased the lipid deposition of M. albus, especially for hepatic lipid deposition, and mainly downregulated hepatic fatty acid metabolism. Besides, gcn2 could be activated under methionine restriction.  相似文献   

6.
(1) Liver regeneration following partial hepatectomy for colorectal liver metastasis (CRLM) has been linked to tumour recurrence. Inhibition of the renin–angiotensin system (RASi) attenuates CRLM growth in the non-regenerating liver. This study investigates whether RASi exerts an antitumour effect within the regenerating liver following partial hepatectomy for CRLM and examines RASi-induced changes in the tumour immune microenvironment; (2) CRLM in mice was induced via intrasplenic injection of mouse colorectal tumour cells, followed by splenectomy on Day 0. Mice were treated with RASi captopril (250 mg/kg/day), or saline (control) from Day 4 to Day 16 (endpoint) and underwent 70% partial hepatectomy on Day 7. Liver and tumour samples were characterised by flow cytometry and immunofluorescence; (3) captopril treatment reduced tumour burden in mice following partial hepatectomy (p < 0.01). Captopril treatment reduced populations of myeloid-derived suppressor cells (MDSCs) (CD11b+Ly6CHi p < 0.05, CD11b+Ly6CLo p < 0.01) and increased PD-1 expression on infiltrating hepatic tissue-resident memory (TRM)-like CD8+ (p < 0.001) and double-negative (CD4-CD8-; p < 0.001) T cells; (4) RASi reduced CRLM growth in the regenerating liver and altered immune cell composition by reducing populations of immunosuppressive MDSCs and boosting populations of PD-1+ hepatic TRMs. Thus, RASi should be explored as an adjunct therapy for patients undergoing partial hepatectomy for CRLM.  相似文献   

7.
This study was undertaken to examine the effect and mechanism of Bofu-tsusho-san formula (BO) on hyperglycemia and hyperlipidemia and in mice fed with a high-fat (HF) diet. The C57BL/6J mice were received control/HF diet for 12 weeks, and oral administration of BO (at three doses) or rosiglitazone (Rosi) or vehicle for the last 4 weeks. Blood, skeletal muscle and tissues were examined by means of measuring glycaemia and dyslipidaemia-associated events. BO treatment effectively prevented HF diet-induced increases in the levels of triglyceride (TG), free fatty acid (FFA) and leptin (p < 0.01, p < 0.01, p < 0.01, respectively). BO treatment exhibited reduced both visceral fat mass and hepatic triacylglycerol content; moreover, BO treatment displayed significantly decreased both the average area of the cut of adipocytes and ballooning of hepatocytes. BO treatment exerted increased the protein contents of glucose transporter 4 (GLUT4) in skeletal muscle, and caused lowered blood glucose levels. BO treatment displayed increased levels of phosphorylated AMP-activated protein kinase (AMPK) in both skeletal muscle and liver tissue. Furthermore, BO reduced the hepatic expression of glucose-6-phosphatase (G6Pase) and phosphenolpyruvate carboxykinase (PEPCK) and glucose production. Therefore, it is possible that the activation of AMPK by BO leads to diminished gluconeogenesis in liver tissue. BO increased hepatic expressions of peroxisome proliferator-activated receptor α (PPARα), whereas down-regulating decreasing expressions of fatty acid synthesis, including sterol regulatory element binding protein 1c (SREBP1c) and fatty acid synthase (FAS), resulting in a decrease in circulating triglycerides. This study originally provides the evidence that amelioration of dyslipidemic and diabetic state by BO in HF-fed mice occurred by regulation of GLUT4, SREBP1c, FAS, PPARα, adiponectin and AMPK phosphorylation.  相似文献   

8.
Previously, we reported a radiation-induced inflammation triggering fat-accumulation through fatty-acid-translocase/cluster of differentiation protein 36 (FAT/CD36) in rat liver. Furthermore, inhibition of radiation-induced FAT/CD36-expression by anti-tumor necrosis factor-α (anti-TNF-α) (infliximab) was shown in vitro. The current study investigates fat-accumulation in a mouse-model of single-dose liver-irradiation (25-Gray) and the effect of anti-TNF-α-therapy on FAT/CD36 gene-expression. Mice livers were selectively irradiated in vivo in presence or absence of infliximab. Serum- and hepatic-triglycerides, mRNA, and protein were analyzed by colorimetric assays, RT-PCR, Immunofluorescence and Western-Blot, respectively. Sudan-staining was used demonstrating fat-accumulation in tissue. In mice livers, early (1–3 h) induction of TNF-α-expression, a pro-inflammatory cytokine, was observed. It was followed by elevated hepatic-triglyceride level (6–12 h), compared to sham-irradiated controls. In contrast, serum-triglyceride level was decreased at these time points. Similar to triglyceride level in mice livers, Sudan staining of liver cryosections showed a quick (6–12 h) increase of fat-droplets after irradiation. Furthermore, expression of fat-transporter-protein FAT/CD36 was increased at protein level caused by radiation or TNF-α. TNF-α-blockage by anti-TNF-α showed an early inhibition of radiation-induced FAT/CD36 expression in mice livers. Immunohistochemistry showed basolateral and cytoplasmic expression of FAT/CD36 in hepatocytes. Moreover, co-localization of FAT/CD36 was detected with α-smooth muscle actin (α-SMA+) cells and F4/80+ macrophages. In summary, hepatic-radiation triggers fat-accumulation in mice livers, involving acute-phase-processes. Accordingly, anti-TNF-α-therapy prevented early radiation-induced expression of FAT/CD36 in vivo.  相似文献   

9.
The purpose of this article is to study the effects and mechanism of miR-4796 in the process of ophiopogon polysaccharide liposome (OPL) regulation of the immune activity of Kupffer cells (KCs). In this study, KCs were used as cell models, and were treated with OPL in different concentrations after being transfected with miR-4796 mimic or miR-4796 inhibitor. Firstly, the secretion of NO and iNOS, phagocytic activity, the expression of surface molecules CD14 and MHC II, apoptosis and ROS secretion were measured by Griess, flow cytometry, fluorescence staining and ELISA. Then, real-time PCR and Western blot were used to measure the expression of TLR4, IKKβ, MyD88 and NF-κB in the TLR4-NF-κB signaling pathway. The results showed that after transfection with miR-4796 mimic, the secretion of NO and iNOS, cell migration, cell phagocytosis and expression levels of CD14 and MHC II in the OPL group were significantly higher than those in the miR-4796 mimic control group (p < 0.05; p < 0.01). In addition, the mRNA and protein expression levels of TLR4, MyD88 and NF-κB were significantly higher than those in miR-4796 mimic control group (p < 0.05; p < 0.01). After transfection with miR-4796 inhibitor, the secretion of NO and iNOS, cell migration, cell phagocytosis, expression of CD14 and MHCII in OPL group were significantly higher than those in the miR-4796 inhibitor control group (p < 0.05; p < 0.01). These results indicated that OPL could regulate the immune activity of KCs by regulating miR-4796 and activating the TLR4-NF-κB signaling pathway.  相似文献   

10.
The objective of this study was to determine the influence of sex and strain on the dysregulation of trace element concentration and associative gene expression due to diet induced obesity in adipose tissue and the liver. Male and female C57BL/6J (B6J) and DBA/2J (D2J) were randomly assigned to a normal-fat diet (NFD) containing 10% kcal fat/g or a mineral-matched high-fat diet (HFD) containing 60% kcal fat/g for 16 weeks. Liver and adipose tissue were assessed for copper, iron, manganese, and zinc concentrations and related changes in gene expression. Notable findings include three-way interactions of diet, sex, and strain amongst adipose tissue iron concentrations (p = 0.005), adipose hepcidin expression (p = 0.007), and hepatic iron regulatory protein (IRP) expression (p = 0.012). Cd11c to Cd163 ratio was increased in adipose tissue due to HFD amongst all biological groups except B6J females, for which tissue iron concentrations were reduced due to HFD (p = 0.002). Liver divalent metal transporter 1 (DMT-1) expression was increased due to HFD amongst B6J males (p < 0.005) and females (p < 0.004), which coincides with the reduction in hepatic iron concentrations found in these biological groups (p < 0.001). Sex, strain, and diet affected trace element concentration, the expression of genes that regulate trace element homeostasis, and the expression of macrophages that contribute to tissue iron-handling in adipose tissue. These findings suggest that sex and strain may be key factors that influence the adaptive capacity of iron mismanagement in adipose tissue and its subsequent consequences, such as insulin resistance.  相似文献   

11.
The immunosenescence-related disproportion in T lymphocytes may have important consequences for endothelial dysfunction, which is a key event in vascular aging. The study was designed to assess the prognostic values of the inflammatory-immune profile to better predict and prevent vascular diseases associated with old age. Eighty individuals aged 70.9 ± 5.3 years were allocated to a low- (LGI) or high-grade inflammation (HGI) group based on CRP (<3 or ≥3 mg/L) as a conventional risk marker of cardiovascular diseases. Significant changes in inflammatory and endothelium-specific variables IL-1β, IL-6, TNFα, oxLDL, H2O2, NO, 3-nitrotyrosine, and endothelial progenitor cells (OR 7.61, 95% CI 2.56–29.05, p < 0.0001), confirmed their interplay in vascular inflammation. The flow-cytometry analysis demonstrated a high disproportion in T lymphocytes CD4+ and CD8+ between LGI and HGI groups. CRP was <3 mg/mL for the CD4/CD8 ratio within the reference values ≥ 1 or ≤2.5, unlike for the CD4/CD8 ratio < 1 and >2.5. The odds ratios for the distribution of CD4+ (OR 5.98, 95% CI 0.001–0.008, p < 0.001), CD8+ (OR 0.23, 95% CI 0.08–0.59, p < 0.01), and CD8CD45RO+ T naïve cells (OR 0.27, 95% CI 0.097–0.695, p < 0.01) and CD4/CD8 (OR 5.69, 95% CI 2.07–17.32, p < 0.001) indicated a potential diagnostic value of T lymphocytes for clinical prognosis in aging-related vascular dysfunction.  相似文献   

12.
The association between nonalcoholic fatty liver disease (NAFLD) and chronic kidney disease has attracted interest and attention over recent years. However, no data are available in children. We determined whether children with NAFLD show signs of renal functional alterations, as determined by estimated glomerular filtration rate (eGFR) and urinary albumin excretion. We studied 596 children with overweight/obesity, 268 with NAFLD (hepatic fat fraction ≥5% on magnetic resonance imaging) and 328 without NAFLD, and 130 healthy normal-weight controls. Decreased GFR was defined as eGFR < 90 mL/min/1.73 m2. Abnormal albuminuria was defined as urinary excretion of ≥30 mg/24 h of albumin. A greater prevalence of eGFR < 90 mL/min/1.73 m2 was observed in patients with NAFLD compared to those without liver involvement and healthy subjects (17.5% vs. 6.7% vs. 0.77%; p < 0.0001). The proportion of children with abnormal albuminuria was also higher in the NAFLD group compared to those without NAFLD, and controls (9.3% vs. 4.0% vs. 0; p < 0.0001). Multivariate logistic regression analysis revealed that NAFLD was associated with decreased eGFR and/or microalbuminuria (odds ratio, 2.54 (confidence interval, 1.16–5.57); p < 0.05) independently of anthropometric and clinical variables. Children with NAFLD are at risk for early renal dysfunction. Recognition of this abnormality in the young may help to prevent the ongoing development of the disease.  相似文献   

13.
Melanoma is known to aggressively metastasize and is one of the prominent causes of skin cancer mortality. This study was designed to assess the molecular mechanism of decursinol angelate (DA) against murine melanoma cell line (B16F10 cells). Treatment of DA resulted in growth inhibition and cell cycle arrest at G0/G1 (p < 0.001) phase, evaluated through immunoblotting. Moreover, autophagy-related proteins such as ATG-5 (p < 0.0001), ATG-7 (p < 0.0001), beclin-1 (p < 0.0001) and transition of LC3-I to LC3-II (p < 0.0001) were markedly decreased, indicating autophagosome inhibition. Additionally, DA treatment triggered apoptotic events which were corroborated by the occurrence of distorted nuclei, elevated reactive oxygen species (ROS) levels and reduction in the mitochondrial membrane potential. Subsequently, there was an increase in the expression of pro-apoptotic protein Bax in a dose-dependent manner, with the corresponding downregulation of Bcl-2 expression and cytochrome C expression following 24 h DA treatment in A375.SM and B16F10 cells. We substantiated our results for apoptotic occurrence through flow cytometry in B16F10 cells. Furthermore, we treated B16F10 cells with N-acetyl-L-cysteine (NAC). NAC treatment upregulated ATG-5 (p < 0.0001), beclin-1 (p < 0.0001) and LC3-I to LC3-II (p < 0.0001) conversion, which was inhibited in the DA treatment group. We also noticed a systematic upregulation of important markers for progression of G1 cell phase such as CDK-2 (p < 0.029), CDK-4 (p < 0.036), cyclin D1 (p < 0.0003) and cyclin E (p < 0.020) upon NAC treatment. In addition, we also observed a significant fold reduction (p < 0.05) in ROS fluorescent intensity and the expression of Bax (p < 0.0001), cytochrome C (p < 0.0001), cleaved caspase-9 (p > 0.010) and cleaved caspase-3 (p < 0.0001). NAC treatment was able to ameliorate DA-induced apoptosis and cell cycle arrest to support our finding. Our in vivo xenograft model also revealed similar findings, such as downregulation of CDK-2 (p < 0.0001) and CDK-4 (p < 0.0142) and upregulation of Bax (p < 0.0001), cytochrome C (p < 0.0001), cleaved caspase 3 (p < 0.0001) and cleaved caspase 9 (p < 0.0001). In summary, our study revealed that DA is an effective treatment against B16F10 melanoma cells and xenograft mice model.  相似文献   

14.
15.
The CD73 pathway is an important anti-inflammatory mechanism in various disease settings. Observations in mouse models suggested that CD73 might have a protective role in kidney damage; however, no direct evidence of its role in human kidney disease has been described to date. Here, we hypothesized that podocyte injury in human kidney diseases alters CD73 expression that may facilitate the diagnosis of podocytopathies. We assessed the expression of CD73 and one of its functionally important targets, the C-C chemokine receptor type 2 (CCR2), in podocytes from kidney biopsies of 39 patients with podocytopathy (including focal segmental glomerulosclerosis (FSGS), minimal change disease (MCD), membranous glomerulonephritis (MGN) and amyloidosis) and a control group. Podocyte CD73 expression in each of the disease groups was significantly increased in comparison to controls (p < 0.001–p < 0.0001). Moreover, there was a marked negative correlation between CD73 and CCR2 expression, as confirmed by immunohistochemistry and immunofluorescence (Pearson r = −0.5068, p = 0.0031; Pearson r = −0.4705, p = 0.0313, respectively), thus suggesting a protective role of CD73 in kidney injury. Finally, we identify CD73 as a novel potential diagnostic marker of human podocytopathies, particularly of MCD that has been notorious for the lack of pathological features recognizable by light microscopy and immunohistochemistry.  相似文献   

16.
Little is known about the ability for epithelial regeneration and wound healing in patients with inflammatory bowel diseases. We evaluated the epithelial proliferation and wound healing ability of patients with Crohn’s disease (CD) using patient-derived intestinal organoids. Human intestinal organoids were constructed in a three-dimensional intestinal crypt culture of enteroscopic biopsy samples from controls and CD patients. The organoid-forming efficiency of ileal crypts derived from CD patients was reduced compared with those from control subjects (p < 0.001). Long-term cultured organoids (≥6 passages) derived from controls and CD patients showed an indistinguishable microscopic appearance and culturing behavior. Under TNFα-enriched conditions (30 ng/mL), the organoid reconstitution rate and cell viability of CD patient-derived organoids were significantly lower than those of the control organoids (p < 0.05 for each). The number of EdU+ cells was significantly lower in TNFα-treated organoids derived from CD patients than in TNFα-treated control organoids (p < 0.05). In a wound healing assay, the unhealed area in TNFα-treated CD patient-derived organoids was significantly larger than that of TNFα-treated control organoids (p < 0.001). The wound healing ability of CD patient-derived organoids is reduced in TNFα-enriched conditions, due to reduced cell proliferation. Epithelial regeneration ability may be impaired in patients with CD.  相似文献   

17.
Metformin can reduce cardiovascular risk independent of glycemic control. The mechanisms behind its non-glycemic benefits, which include decreased energy intake, lower blood pressure and improved lipid and fatty acid metabolism, are not fully understood. In our study, metformin treatment reduced myocardial accumulation of neutral lipids—triglycerides, cholesteryl esters and the lipotoxic intermediates—diacylglycerols and lysophosphatidylcholines in a prediabetic rat model (p < 0.001). We observed an association between decreased gene expression and SCD-1 activity (p < 0.05). In addition, metformin markedly improved phospholipid fatty acid composition in the myocardium, represented by decreased SFA profiles and increased n3-PUFA profiles. Known for its cardioprotective and anti-inflammatory properties, metformin also had positive effects on arachidonic acid metabolism and CYP-derived arachidonic acid metabolites. We also found an association between increased gene expression of the cardiac isoform CYP2c with increased 14,15-EET (p < 0.05) and markedly reduced 20-HETE (p < 0.001) in the myocardium. Based on these results, we conclude that metformin treatment reduces the lipogenic enzyme SCD-1 and the accumulation of the lipotoxic intermediates diacylglycerols and lysophosphatidylcholine. Increased CYP2c gene expression and beneficial effects on CYP-derived arachidonic acid metabolites in the myocardium can also be involved in cardioprotective effect of metformin.  相似文献   

18.
This study examined the effects of xylitol on mouse intestinal microbiota and urinary isoflavonoids. Xylitol is classified as a sugar alcohol and used as a food additive. The intestinal microbiota seems to play an important role in isoflavone metabolism. Xylitol feeding appears to affect the gut microbiota. We hypothesized that dietary xylitol changes intestinal microbiota and, therefore, the metabolism of isoflavonoids in mice. Male mice were randomly divided into two groups: those fed a 0.05% daidzein with 5% xylitol diet (XD group) and those fed a 0.05% daidzein-containing control diet (CD group) for 28 days. Plasma total cholesterol concentrations were significantly lower in the XD group than in the CD group (p < 0.05). Urinary amounts of equol were significantly higher in the XD group than in the CD group (p < 0.05). The fecal lipid contents (% dry weight) were significantly greater in the XD group than in the CD group (p < 0.01). The cecal microbiota differed between the two dietary groups. The occupation ratios of Bacteroides were significantly greater in the CD than in the XD group (p < 0.05). This study suggests that xylitol has the potential to affect the metabolism of daidzein by altering the metabolic activity of the intestinal microbiota and/or gut environment. Given that equol affects bone health, dietary xylitol plus isoflavonoids may exert a favorable effect on bone health.  相似文献   

19.
Hexapeptide WKYMVm (Trp-Lys-Tyr-Met-Val-D-Met), a ligand of formyl peptide receptor 2, exhibits anti-inflammatory and angiogenic properties in disease models. However, the therapeutic effects of WKYMVm on hepatic fibrosis have not been evaluated to date. Therefore, we investigated whether WKYMVm exerts antifibrotic effects and induces vascular regeneration in a rat model of bile duct ligation (BDL). The antifibrotic and angiogenic effects of WKYMVm on liver regeneration in the BDL rat model were analyzed using biochemical assays, qRT-PCR, western blotting, immunofluorescence, and immunohistochemistry. To determine the effects of WKYMVm on hepatic fibrosis and angiogenesis in vitro, we measured the expression levels of fibrotic factors in hepatic stellate cells (HSCs) and angiogenic factors in human umbilical vein endothelial cells (HUVECs). WKYMVm attenuated the expression of collagen type I (Col I) and α-smooth muscle actin (α-SMA) and significantly increased the levels of angiogenetic factors in the BDL model (p < 0.05). WKYMVm reduced fibrotic marker expression in transforming growth factor (TGF)-β-induced HSCs and promoted angiogenic activity through tube formation in 5-Fluorouracil (FU)-treated HUVECs (p < 0.05). Also, WKYMVm administration enhanced hepatocyte proliferation in BDL rats (p < 0.05). The WKYMVm alleviates hepatic fibrosis by inhibiting HSC activation and promotes hepatic regeneration via vascular remodeling. These data suggest that the WKYMVm may be a new therapeutic agent for liver fibrosis.  相似文献   

20.
Both monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) play important roles in lipid metabolism, and diets enriched with either of these two fatty acids are associated with decreased cardiovascular risk. Conventional soybean oil (CSO), a common food ingredient, predominantly contains linoleic acid (LA; C18:2), a n-6 PUFA. Recently, a modified soybean oil (MSO) enriched in oleic acid (C18:1), a n-9 MUFA, has been developed, because of its improved chemical stability to oxidation. However, the effect of the different dietary soybean oils on cardiovascular disease remains unknown. To test whether diets rich in CSO versus MSO would attenuate atherosclerosis development, LDL receptor knock-out (LDLR-KO) mice were fed a Western diet enriched in saturated fatty acids (control), or a Western diet supplemented with 5% (w/w) LA-rich CSO or high-oleic MSO for 12 weeks. Both soybean oils contained a similar amount of linolenic acid (C18:3 n-3). The CSO diet decreased plasma lipid levels and the cholesterol content of VLDL and LDL by approximately 18% (p < 0.05), likely from increased hepatic levels of PUFA, which favorably regulated genes involved in cholesterol metabolism. The MSO diet, but not the CSO diet, suppressed atherosclerotic plaque size compared to the Western control diet (Control Western diet: 6.5 ± 0.9%; CSO diet: 6.4 ± 0.7%; MSO diet: 4.0 ± 0.5%) (p < 0.05), independent of plasma lipid level changes. The MSO diet also decreased the ratio of n-6/n-3 PUFA in the liver (Control Western diet: 4.5 ± 0.2; CSO diet: 6.1 ± 0.2; MSO diet: 2.9 ± 0.2) (p < 0.05), which correlated with favorable hepatic gene expression changes in lipid metabolism and markers of systemic inflammation. In conclusion, supplementation of the Western diet with MSO, but not CSO, reduced atherosclerosis development in LDLR-KO mice independent of changes in plasma lipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号