共查询到20条相似文献,搜索用时 0 毫秒
1.
Mariarosaria De Pascali Monica De Caroli Alessio Aprile Antonio Miceli Carla Perrotta Mariolina Gullì Patrizia Rampino 《International journal of molecular sciences》2022,23(14)
Durum wheat is strongly affected by climatic constraints such as high temperatures and drought, which frequently lead to yield reduction. Damages due to high temperatures are related to plant thermotolerance, a trait determined by two components: basal and acquired thermotolerance. In this study, the effect of drought and heat stress imposed singularly or sequentially was investigated in ten durum wheat cultivars (cvs) at the physiological and molecular level. The traits analyzed were cell membrane stability, relative water content, proline content, and expression level of several genes for heat shock proteins (HSPs). Our results indicate that drought priming can induce the acquisition of thermotolerance in most cultivars already classified as able to acquire thermotolerance by heat pre-treatment. Proline accumulation was correlated to cell membrane stability, meaning that the most thermotolerant cvs were able to accumulate higher levels of proline. Acquired thermotolerance is also due to the activation of HSP gene expression; similarly, pre-treatment with water stress was able to activate HSPs expression. The results reported indicate that water stress plays an important role in inducing thermotolerance, comparable to mild heat stress pre-treatment. This is the first report on the effect of drought stress on the acquisition of thermotolerance. 相似文献
2.
Kyoungwon Cho You-Ran Jang Sun-Hyung Lim Susan B. Altenbach Yong Q. Gu Annamaria Simon-Buss Jong-Yeol Lee 《International journal of molecular sciences》2021,22(14)
The low-molecular weight glutenin subunit (LMW-GS) composition of wheat (Triticum aestivum) flour has important effects on end-use quality. However, assessing the contributions of each LMW-GS to flour quality remains challenging because of the complex LMW-GS composition and allelic variation among wheat cultivars. Therefore, accurate and reliable determination of LMW-GS alleles in germplasm remains an important challenge for wheat breeding. In this study, we used an optimized reversed-phase HPLC method and proteomics approach comprising 2-D gels coupled with liquid chromatography–tandem mass spectrometry (MS/MS) to discriminate individual LMW-GSs corresponding to alleles encoded by the Glu-A3, Glu-B3, and Glu-D3 loci in the ‘Aroona’ cultivar and 12 ‘Aroona’ near-isogenic lines (ARILs), which contain unique LMW-GS alleles in the same genetic background. The LMW-GS separation patterns for ‘Aroona’ and ARILs on chromatograms and 2-D gels were consistent with those from a set of 10 standard wheat cultivars for Glu-3. Furthermore, 12 previously uncharacterized spots in ‘Aroona’ and ARILs were excised from 2-D gels, digested with chymotrypsin, and subjected to MS/MS. We identified their gene haplotypes and created a 2-D gel map of LMW-GS alleles in the germplasm for breeding and screening for desirable LMW-GS alleles for wheat quality improvement. 相似文献
3.
Tanushree Halder Hui Liu Yinglong Chen Guijun Yan Kadambot H. M. Siddique 《International journal of molecular sciences》2021,22(7)
Global wheat (Triticum aestivum L.) production is constrained by different biotic and abiotic stresses, which are increasing with climate change. An improved root system is essential for adaptability and sustainable wheat production. In this study, 10 pairs of near-isogenic lines (NILs)—targeting four genomic regions (GRs) on chromosome arms 4BS, 4BL, 4AS, and 7AL of hexaploid wheat—were used to phenotype root traits in a semi-hydroponic system. Seven of the 10 NIL pairs significantly differed between their isolines for 11 root traits. The NIL pairs targeting qDSI.4B.1 GR varied the most, followed by the NIL pair targeting qDT.4A.1 and QHtscc.ksu-7A GRs. For pairs 5–7 targeting qDT.4A.1 GR, pair 6 significantly differed in the most root traits. Of the 4 NIL pairs targeting qDSI.4B.1 GR, pairs 2 and 4 significantly differed in 3 and 4 root traits, respectively. Pairs 9 and 10 targeting QHtscc.ksu-7A GR significantly differed in 1 and 4 root traits, respectively. Using the wheat 90K Illumina iSelect array, we identified 15 putative candidate genes associated with different root traits in the contrasting isolines, in which two UDP-glycosyltransferase (UGT)-encoding genes, TraesCS4A02G185300 and TraesCS4A02G442700, and a leucine-rich repeat receptor-like protein kinase (LRR-RLK)-encoding gene, TraesCS4A02G330900, also showed important functions for root trait control in other crops. This study characterized, for the first time, that these GRs control root traits in wheat, and identified candidate genes, although the candidate genes will need further confirmation and validation for marker-assisted wheat breeding. 相似文献
4.
Domenica Nigro Stefania Fortunato Stefania Lucia Giove Elisabetta Mazzucotelli Agata Gadaleta 《International journal of molecular sciences》2020,21(23)
Durum wheat (Triticum turgidum L. ssp. durum) is a minor crop grown on about 17 million hectares of land worldwide. Several grain characteristics determine semolina’s high end-use quality, such as grain protein content (GPC) which is directly related to the final products’ nutritional and technological values. GPC improvement could be pursued by considering a candidate gene approach. The glutamine synthetase (GS)/glutamate synthase (GOGAT) cycle represents a bottleneck in the first step of nitrogen assimilation. QTL for GPC have been located on all chromosomes, and several major ones have been reported on 2A and 2B chromosomes, where GS2 and Fd-GOGAT genes have been mapped. A useful and efficient method to validate a putative QTL is the constitution of near-isogenic lines (NILs) by using the marker found to be associated to that QTL. Here, we present the development of two distinct sets of heterogeneous inbred family (HIF)- based NILs segregating for GS2 and Fd-GOGAT genes obtained from heterozygous lines at those loci, as well as their genotypic and phenotypic characterizations. The results allow the validation of the previously identified GPC QTL on 2A and 2B chromosomes, along with the role of these key genes in GPC control. 相似文献
5.
Jakub Pastuszak Micha Dziurka Marta Hornyk Anna Szczerba Przemysaw Kope Agnieszka Paek 《International journal of molecular sciences》2022,23(15)
The area of farming lands affected by increasing soil salinity is growing significantly worldwide. For this reason, breeding works are conducted to improve the salinity tolerance of important crop species. The goal of the present study was to indicate physiological or biochemical parameters characterizing three durum wheat accessions with various tolerance to salinity. The study was carried out on germinating seeds and mature plants of a Polish SMH87 line, an Australian cultivar ‘Tamaroi’ (salt-sensitive), and the BC5Nax2 line (salt-tolerant) exposed to 0–150 mM NaCl. Germination parameters, electrolyte leakage (EL), and salt susceptibility index were determined in the germinating caryopses, whereas photosynthetic parameters, carbohydrate and phenolic content, antioxidant activity as well as yield were measured in fully developed plants. The parameters that most differentiated the examined accessions in the germination phase were the percentage of germinating seeds (PGS) and germination vigor (Vi). In the fully developed plants, parameters included whether the plants had the maximum efficiency of the water-splitting reaction on the donor side of photosystem II (PSII)–Fv/F0, energy dissipation from PSII–DIo/CSm, and the content of photosynthetic pigments and hydrogen peroxide, which differentiated studied genotypes in terms of salinity tolerance degree. Salinity has a negative impact on grain yield by reducing the number of seeds per spike and the mass of one thousand seeds (MTS), which can be used as the most suitable parameter for determining tolerance to salinity stress. The most salt-tolerant BC5Nax2 line was characterized by the highest PGS, and Vi for NaCl concentration of 100–150 mM, content of chlorophyll a, b, carotenoids, and also MTS at all applied salt concentrations as compared with the other accessions. The most salt-sensitive cv. ‘Tamaroi’ demonstrated higher H2O2 concentration which proves considerable oxidative damage caused by salinity stress. Mentioned parameters can be helpful for breeders in the selection of genotypes the most resistant to this stress. 相似文献
6.
Yuzhou Lan Aakash Chawade Ramune Kuktaite Eva Johansson 《International journal of molecular sciences》2022,23(6)
Global climate change is threatening wheat productivity; improved yield under drought conditions is urgent. Here, diverse spring-wheat lines (modern, old and wheat-rye introgressions) were examined in an image-based early-vigour assay and a controlled-conditions (Biotron) trial that evaluated 13 traits until maturity. Early root vigour was significantly higher in the old Swedish lines (root length 8.50 cm) and introgressed lines with 1R (11.78 cm) and 1RS (9.91 cm) than in the modern (4.20 cm) and 2R (4.67 cm) lines. No significant correlation was noted between early root and shoot vigour. A higher yield was obtained under early drought stress in the 3R genotypes than in the other genotype groups, while no clear patterns were noted under late drought. Evaluating the top 10% of genotypes in terms of the stress-tolerance index for yield showed that root biomass, grains and spikes per plant were accountable for tolerance to early drought, while 1000-grain weight and flag-leaf area were accountable for tolerance to late drought. Early root vigour was determined as an important focus trait of wheat breeding for tolerance to climate-change-induced drought. The responsible genes for the trait should be searched for in these diverse lines. Additional drought-tolerance traits determined here need further elaboration to identify the responsible genes. 相似文献
7.
8.
Lu-Yu Yan Jia-Gui Guo Xin Zhang Yang Liu Xin-Xin Xiong Yu-Xuan Han Li-Li Zhang Xiao-Hong Zhang Dong-Hong Min 《International journal of molecular sciences》2022,23(13)
The peptidase M24 (Metallopeptidase 24, M24) superfamily is essential for plant growth, stress response, and pathogen defense. At present, there are few systematic reports on the identification and classification of members of the peptidase M24 proteins superfamily in wheat. In this work, we identified 53 putative candidate TaM24 genes. According to the protein sequences characteristics, these members can be roughly divided into three subfamilies: I, II, III. Most TaM24 genes are complex with multiple exons, and the motifs are relatively conserved in each sub-group. Through chromosome mapping analysis, we found that the 53 genes were unevenly distributed on 19 wheat chromosomes (except 3A and 3D), of which 68% were in triads. Analysis of gene duplication events showed that 62% of TaM24 genes in wheat came from fragment duplication events, and there were no tandem duplication events to amplify genes. Analysis of the promoter sequences of TaM24 genes revealed that cis-acting elements were rich in response elements to drought, osmotic stress, ABA, and MeJA. We also studied the expression of TaM24 in wheat tissues at developmental stages and abiotic stress. Then we selected TaM24-9 as the target for further analysis. The results showed that TaM24-9 genes strengthened the drought and salt tolerance of plants. Overall, our analysis showed that members of the peptidase M24 genes may participate in the abiotic stress response and provided potential gene resources for improving wheat resistance. 相似文献
9.
Izabela Marcińska Ilona Czyczy?o-Mysza Edyta Skrzypek Maciej T. Grzesiak Franciszek Janowiak Maria Filek Micha? Dziurka Kinga Dziurka Piotr Waligórski Katarzyna Juzoń Katarzyna Cyganek Stanis?aw Grzesiak 《International journal of molecular sciences》2013,14(7):13171-13193
The aim of the study was to assess the role of salicylic acid (SA) and abscisic acid (ABA) in osmotic stress tolerance of wheat seedlings. This was accomplished by determining the impact of the acids applied exogenously on seedlings grown under osmotic stress in hydroponics. The investigation was unique in its comprehensiveness, examining changes under osmotic stress and other conditions, and testing a number of parameters simultaneously. In both drought susceptible (SQ1) and drought resistant (CS) wheat cultivars, significant physiological and biochemical changes were observed upon the addition of SA (0.05 mM) or ABA (0.1 μM) to solutions containing half-strength Hoagland medium and PEG 6000 (−0.75 MPa). The most noticeable result of supplementing SA or ABA to the medium (PEG + SA and PEG + ABA) was a decrease in the length of leaves and roots in both cultivars. While PEG treatment reduced gas exchange parameters, chlorophyll content in CS, and osmotic potential, and conversely, increased lipid peroxidation, soluble carbohydrates in SQ1, proline content in both cultivars and total antioxidants activity in SQ1, PEG + SA or PEG + ABA did not change the values of these parameters. Furthermore, PEG caused a two-fold increase of endogenous ABA content in SQ1 and a four-fold increase in CS. PEG + ABA increased endogenous ABA only in SQ1, whereas PEG + SA caused a greater increase of ABA content in both cultivars compared to PEG. In PEG-treated plants growing until the harvest, a greater decrease of yield components was observed in SQ1 than in CS. PEG + SA, and particularly PEG + ABA, caused a greater increase of these yield parameters in CS compared to SQ1. In conclusion, SA and ABA ameliorate, particularly in the tolerant wheat cultivar, the harmful effects and after effects of osmotic stress induced by PEG in hydroponics through better osmotic adjustment achieved by an increase in proline and carbohydrate content as well as by an increase in antioxidant activity. 相似文献
10.
The Physiological Importance of Glucosinolates on Plant Response to Abiotic Stress in Brassica 总被引:1,自引:0,他引:1
María del Carmen Martínez-Ballesta Diego A. Moreno Micaela Carvajal 《International journal of molecular sciences》2013,14(6):11607-11625
Glucosinolates, a class of secondary metabolites, mainly found in Brassicaceae, are affected by the changing environment. This review is focusing on the physiological significance of glucosinolates and their hydrolysis products in the plant response to different abiotic stresses. Special attention is paid to the crosstalk between some of the physiological processes involved in stress response and glucosinolate metabolism, with the resulting connection between both pathways in which signaling mechanisms glucosinolate may act as signals themselves. The function of glucosinolates, further than in defense switching, is discussed in terms of alleviating pathogen attack under abiotic stress. The fact that the exogenous addition of glucosinolate hydrolysis products may alleviate certain stress conditions through its effect on specific proteins is described in light of the recent reports, but the molecular mechanisms involved in this response merit further research. Finally, the transient allocation and re-distribution of glucosinolates as a response to environmental changes is summarized. 相似文献
11.
Lyuben Zagorchev Wolfgang Stggl Denitsa Teofanova Junmin Li Ilse Kranner 《International journal of molecular sciences》2021,22(14)
Parasitic angiosperms, comprising a diverse group of flowering plants, are partially or fully dependent on their hosts to acquire water, mineral nutrients and organic compounds. Some have detrimental effects on agriculturally important crop plants. They are also intriguing model systems to study adaptive mechanisms required for the transition from an autotrophic to a heterotrophic metabolism. No less than any other plant, parasitic plants are affected by abiotic stress factors such as drought and changes in temperature, saline soils or contamination with metals or herbicides. These effects may be attributed to the direct influence of the stress, but also to diminished host availability and suitability. Although several studies on abiotic stress response of parasitic plants are available, still little is known about how abiotic factors affect host preferences, defense mechanisms of both hosts and parasites and the effects of combinations of abiotic and biotic stress experienced by the host plants. The latter effects are of specific interest as parasitic plants pose additional pressure on contemporary agriculture in times of climate change. This review summarizes the existing literature on abiotic stress response of parasitic plants, highlighting knowledge gaps and discussing perspectives for future research and potential agricultural applications. 相似文献
12.
13.
FBX proteins are subunits of the SCF complex (Skp1–cullin–FBX) belonging to the E3 ligase family, which is involved in the ubiquitin–proteasome 26S (UPS) pathway responsible for the post-translational protein turnover. By targeting, in a selective manner, key regulatory proteins for ubiquitination and 26S proteasome degradation, FBX proteins play a major role in plant responses to diverse developmental and stress conditions. Although studies on the genomic organization of the FBX gene family in various species have been reported, knowledge related to bread wheat (Triticum aestivum) is scarce and needs to be broadened. Using the latest assembly of the wheat genome, we identified 3670 TaFBX genes distributed non-homogeneously within the three subgenomes (A, B and D) and between the 21 chromosomes, establishing it as one of the richest gene families among plant species. Based on the presence of the five different chromosomal regions previously identified, the present study focused on the genomic distribution of the TaFBX family and the identification of differentially expressed genes during the embryogenesis stages and in response to heat and drought stress. Most of the time, when comparing the expected number of genes (taking into account the formal gene distribution on the entire wheat genome), the TaFBX family harbors a different pattern at the various stratum of observation (subgenome, chromosome, chromosomal regions). We report here that the local gene expansion of the TaFBX family must be the consequence of multiple and complex events, including tandem and small-scale duplications. Regarding the differentially expressed TaFBX genes, while the majority of the genes are localized in the distal chromosomal regions (R1 and R3), differentially expressed genes are more present in the interstitial regions (R2a and R2b) than expected, which could be an indication of the preservation of major genes in those specific chromosomal regions. 相似文献
14.
Manzer H. Siddiqui Mutahhar Y. Al-Khaishany Mohammed A. Al-Qutami Mohamed H. Al-Whaibi Anil Grover Hayssam M. Ali Mona S. Al-Wahibi Najat A. Bukhari 《International journal of molecular sciences》2015,16(5):10214-10227
Drought stress is one of the major abiotic stresses that are a threat to crop production worldwide. Drought stress impairs the plants growth and yield. Therefore, the aim of the present experiment was to select the tolerant genotype/s on the basis of moprpho-physiological and biochemical characteristics of 10 Vicia faba genotypes (Zafar 1, Zafar 2, Shebam, Makamora, Espan, Giza Blanka, Giza 3, C4, C5 and G853) under drought stress. We studied the effect of different levels of drought stress i.e., (i) normal irrigation (ii) mild stress (iii) moderate stress, and (iv) severe stress on plant height (PH) plant−1, fresh weight (FW) and dry weight (DW) plant−1, area leaf−1, leaf relative water content (RWC), proline (Pro) content, total chlorophyll (Total Chl) content, electrolyte leakage (EL), malondialdehyde (MDA), hydrogen peroxide (H2O2) content, and activities of catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) of genotypes of faba bean. Drought stress reduced all growth parameters and Total Chl content of all genotypes. However, the deteriorating effect of drought stress on the growth performance of genotypes “C5” and “Zafar 1” were relatively low due to its better antioxidant enzymes activities (CAT, POD and SOD), and accumulation of Pro and Total Chl, and leaf RWC. In the study, genotype “C5” and “Zafar 1” were found to be relatively tolerant to drought stress and genotypes “G853” and “C4” were sensitive to drought stress. 相似文献
15.
Andrii Fatiukha Mathieu Deblieck Valentyna Klymiuk Lianne Merchuk-Ovnat Zvi Peleg Frank Ordon Tzion Fahima Abraham Korol Yehoshua Saranga Tamar Krugman 《International journal of molecular sciences》2021,22(4)
Phenotypic plasticity is one of the main mechanisms of adaptation to abiotic stresses via changes in critical developmental stages. Altering flowering phenology is a key evolutionary strategy of plant adaptation to abiotic stresses, to achieve the maximum possible reproduction. The current study is the first to apply the linear regression residuals as drought plasticity scores while considering the variation in flowering phenology and traits under non-stress conditions. We characterized the genomic architecture of 17 complex traits and their drought plasticity scores for quantitative trait loci (QTL) mapping, using a mapping population derived from a cross between durum wheat (Triticum turgidum ssp. durum) and wild emmer wheat (T. turgidum ssp. dicoccoides). We identified 79 QTLs affected observed traits and their plasticity scores, of which 33 reflected plasticity in response to water stress and exhibited epistatic interactions and/or pleiotropy between the observed and plasticity traits. Vrn-B3 (TaTF1) residing within an interval of a major drought-escape QTL was proposed as a candidate gene. The favorable alleles for most of the plasticity QTLs were contributed by wild emmer wheat, demonstrating its high potential for wheat improvement. Our study presents a new approach for the quantification of plant adaptation to various stresses and provides new insights into the genetic basis of wheat complex traits under water-deficit stress. 相似文献
16.
Jaykumar Patel Deepesh Khandwal Babita Choudhary Dolly Ardeshana Rajesh Kumar Jha Bhakti Tanna Sonam Yadav Avinash Mishra Rajeev K. Varshney Kadambot H. M. Siddique 《International journal of molecular sciences》2022,23(2)
The frequency and severity of extreme climatic conditions such as drought, salinity, cold, and heat are increasing due to climate change. Moreover, in the field, plants are affected by multiple abiotic stresses simultaneously or sequentially. Thus, it is imperative to compare the effects of stress combinations on crop plants relative to individual stresses. This study investigated the differential regulation of physio-biochemical and metabolomics parameters in peanut (Arachis hypogaea L.) under individual (salt, drought, cold, and heat) and combined stress treatments using multivariate correlation analysis. The results showed that combined heat, salt, and drought stress compounds the stress effect of individual stresses. Combined stresses that included heat had the highest electrolyte leakage and lowest relative water content. Lipid peroxidation and chlorophyll contents did not significantly change under combined stresses. Biochemical parameters, such as free amino acids, polyphenol, starch, and sugars, significantly changed under combined stresses compared to individual stresses. Free amino acids increased under combined stresses that included heat; starch, sugars, and polyphenols increased under combined stresses that included drought; proline concentration increased under combined stresses that included salt. Metabolomics data that were obtained under different individual and combined stresses can be used to identify molecular phenotypes that are involved in the acclimation response of plants under changing abiotic stress conditions. Peanut metabolomics identified 160 metabolites, including amino acids, sugars, sugar alcohols, organic acids, fatty acids, sugar acids, and other organic compounds. Pathway enrichment analysis revealed that abiotic stresses significantly affected amino acid, amino sugar, and sugar metabolism. The stress treatments affected the metabolites that were associated with the tricarboxylic acid (TCA) and urea cycles and associated amino acid biosynthesis pathway intermediates. Principal component analysis (PCA), partial least squares-discriminant analysis (PLS-DA), and heatmap analysis identified potential marker metabolites (pinitol, malic acid, and xylopyranose) that were associated with abiotic stress combinations, which could be used in breeding efforts to develop peanut cultivars that are resilient to climate change. The study will also facilitate researchers to explore different stress indicators to identify resistant cultivars for future crop improvement programs. 相似文献
17.
18.
María Illescas María E. Morn-Diez ngel Emilio Martínez de Alba Rosa Hermosa Enrique Monte 《International journal of molecular sciences》2022,23(12)
Eight Trichoderma strains were evaluated for their potential to protect wheat seedlings against severe (no irrigation within two weeks) water stress (WS). Considering the plant fresh weight and phenotype, T. asperellum T140, which displays 1-aminocyclopropane-1-carboxylic acid deaminase activity and which is able to produce several phytohormones, was selected. The molecular and biochemical results obtained from 4-week-old wheat seedlings linked T140 application with a downregulation in the WS-response genes, a decrease in antioxidant activities, and a drop in the proline content, as well as low levels of hydrogen peroxide and malondialdehyde in response to severe WS. All of these responses are indicative of T140-primed seedlings having a higher tolerance to drought than those that are left untreated. A greenhouse assay performed under high nitrogen fertilization served to explore the long-term effects of T140 on wheat plants subjected to moderate (halved irrigation) WS. Even though all of the plants showed acclimation to moderate WS regardless of T140 application, there was a positive effect exerted by T. asperellum on the level of tolerance of the wheat plants to this stress. Strain T140 modulated the expression of a plant ABA-dependent WS marker and produced increased plant superoxide dismutase activity, which would explain the positive effect of Trichoderma on increasing crop yields under moderate WS conditions. The results demonstrate the effectiveness of T. asperellum T140 as a biostimulant for wheat plants under WS conditions, making them more tolerant to drought. 相似文献
19.
Chromosomal Location of Traits Associated with Wheat Seedling Water and Phosphorus Use Efficiency under Different Water and Phosphorus Stresses 总被引:3,自引:0,他引:3
Hong-Xing Cao Zheng-Bin Zhang Cheng-Xu Sun Hong-Bo Shao Wei-Yi Song Ping Xu 《International journal of molecular sciences》2009,10(9):4116-4136
The objective of this study was to locate chromosomes for improving water and phosphorus-deficiency tolerance of wheat at the seedling stage. A set of Chinese Spring-Egyptian Red wheat substitution lines and their parent Chinese Spring (recipient) and Egyptian Red (donor) cultivars were measured to determine the chromosomal locations of genes controlling water use efficiency (WUE) and phosphorus use efficiency (PUE) under different water and phosphorus conditions. The results underlined that chromosomes 1A, 7A, 7B, and 3A showed higher leaf water use efficiency (WUEl = Pn/Tr; Pn = photosynthetic rate; Tr = transpiration rate) under W-P (Hoagland solution with 1/2P), -W-P (Hoagland solution with 1/2P and 10% PEG). Chromosomes 7A, 3D, 2B, 3B, and 4B may carry genes for positive effects on individual plant water use efficiency (WUEp = biomass/TWC; TWC = total water consumption) under WP (Hoagland solution), W-P and -W-P treatment. Chromosomes 7A and 7D carry genes for PUE enhancement under WP, -WP (Hoagland solution with 10% PEG) and W-P treatment. Chromosome 7A possibly has genes for controlling WUE and PUE simultaneously, which indicates that WUE and PUE may share the same genetic background. Phenotypic and genetic analysis of the investigated traits showed that photosynthetic rate (Pn) and transpiration rate (Tr), Tr and WUEl showed significant positive and negative correlations under WP, W-P, -WP and -W-P, W-P, -WP treatments, respectively. Dry mass (DM), WUEP, PUT (phosphorus uptake) all showed significant positive correlation under WP, W-P and -WP treatment. PUE and phosphorus uptake (PUT = P uptake per plant) showed significant negative correlation under the four treatments. The results might provide useful information for improving WUE and PUE in wheat genetics. 相似文献
20.
Malu Ram Yadav Mukesh Choudhary Jogendra Singh Milan Kumar Lal Prakash Kumar Jha Pushpika Udawat Narendra Kumar Gupta Vishnu D. Rajput Nitin Kumar Garg Chirag Maheshwari Muzaffar Hasan Sunita Gupta Tarun Kumar Jatwa Rakesh Kumar Arvind Kumar Yadav P. V. Vara Prasad 《International journal of molecular sciences》2022,23(5)