共查询到17条相似文献,搜索用时 78 毫秒
1.
2.
超级电容器储能的节能系统研究 总被引:5,自引:0,他引:5
交流电机变频调速系统已经在工农业生产中得到了广泛的应用,但是大部分的变频调速系统采用了能耗制动的方式,造成了能量的巨大浪费。采用超级电容器储能的节能系统,能够在电机制动时回收制动能量,从而实现了能量的节约。提出一种基于规则的能量管理方法,根据变频调速系统中直流母线的电压来决定超级电容器储能的节能系统的工作状态。采用PSIM仿真软件分析超级电容器储能的节能系统在变频调速系统中的作用。实验中采用一个可编程控制的电机来代替实际的负载。仿真和实验结果都表明,超级电容器储能的节能系统能够在电机制动时回收制动能量,从而验证了这种节能方案的可行性和基于规则的能量管理方法的有效性。 相似文献
3.
超级电容器储能的应用 总被引:3,自引:0,他引:3
随着科技的迅猛发展,各种新设备新器件不断出现,尤其是计算机设备、微电子设备以及电力电子设备等敏感负荷的不断增加,使得电力用户对电能质量的要求日益提高。为了提高电网的电能质量需要注入一定的功率来解决由无功功率冲击、电力系统故障等引起的电压方面的问题。这必然需要具有储能系统来提供能量。文章介绍了超级电容器这一新型能源器件。超级电容器兼有常规电容器功率密度大、充电电池能量密度高的优点,可以快速充放电、寿命长,是高效实用的储能元件。将超级电容器储能系统与其他储能系统相比,分析了其特点和在改善电能质量方面的应用。 相似文献
4.
此处研究和设计了一种超级电容均衡模块,用于减少甚至消除超级电容器模块之间存在的电压不均衡,以此来有效提高超级电容器储能系统的电容容量利用率,并延长其寿命。模块采用一种新的采样及控制模式,避免了庞大的电压检测电路和复杂的控制电路,通过单片机控制均衡电流和均衡时间,能对均衡速度和时间有效的控制。系统还具备与上位机通讯的功能,可以根据上位机的命令来执行操作,更加灵活方便。此处具体分析了所研究均衡电路的结构和工作原理,论证了该电路的特点和优势。结合超级电容器储能系统的应用背景设计了电路,进行了实验研究,验证了这种电压均衡控制模块的可行性。 相似文献
5.
6.
超级电容器储能系统并网控制研究 总被引:1,自引:0,他引:1
以超级电容器作为储能元件设计了超级电容器储能并网系统,并将无差拍控制应用到超级电容器储能系统的并网控制中,能实现对并网系统的有功功率和无功功率的综合快速补偿,有效地改善了并网系统的电能质量和稳定性.通过仿真验证了所提方法的正确性,结果表明:所设计的并网系统控制简单、灵活性强,随时可以实现无冲击并网,可提高系统效率,可控性良好. 相似文献
7.
8.
超级电容器问世已有二十几年,至今被广泛应用在智能化仪器仪表中,被人们所认知。大容量超级电容器在现代电力驱动系统中的应用是近几年刚刚出现的新技术。本文作者为了推动超级电容器在电力驱动系统的应用范围,将根据自己的工程实践向读者展示超级电容器在电力驱动系统中的应用原理和实际效果。 相似文献
9.
针对有轨电车现有的制动方式存在能量回收利用率低、制动效果差、系统抗干扰能力差、回收方式单一等问题,通过对制动方式、能量回收、能量存储、能量传输等方面进行了研究,针对现有制动方式的缺陷进行改进,设计了有轨电车制动能量回收系统.该系统采用超级电容作为能量存储器,利用超级电容充电时间短、放电电流大的特性,从根本上克服了传统制动电阻发热量大、能效低的问题.该系统回收能量通过DC/DC变换器向同一线路其他有轨电车提供能量,也可通过DC/AC逆变器向其他辅助系统提供能量,较传统制动方式在系统的稳定性、可靠性以及回收效率有极大地提高.MATLAB/Simulink仿真实验结果表明,此系统通过对制动能量的回收,有效提高了有轨电车的能量利用率和局部电网的负载容量及稳定性,并且该系统操作简单,寿命长,具有较好的应用和推广价值. 相似文献
10.
11.
12.
13.
基于列车运行状态的城轨超级电容储能装置控制策略 总被引:1,自引:0,他引:1
研究应用于城轨交通的地面式超级电容储能装置的控制策略。首先建立结合列车、储能装置和制动电阻的牵引供电系统的数学模型,分析了列车再生制动时超级电容和制动电阻能量分配的影响因素,并由此提出了考虑列车运行状态的储能装置控制策略。该控制策略通过列车实时功率、位置数据,动态调整储能装置的充电电压指令,从而调整超级电容的充电功率,使储能装置工作在最优状态。为了验证所提出的控制策略的有效性,利用北京地铁八通线梨园站的兆瓦级超级电容储能装置开展了实际列车运营实验。现场实验表明,该控制策略可有效地提高超级电容的利用率,增大储能装置的节能量,降低地铁系统的运行能耗。 相似文献
14.
15.
16.
针对超级电容和锂离子电池经Buck-Boost双向DC/DC变换器升压后并联的混合储能系统(hybrid energy storage system,HESS),详细分析了储能系统电流响应特性的影响因素。根据超级电容功率特性好和锂离子电池容量较大的特点,分析这2种储能介质在储能系统中的作用,并在此基础上提出了一种电池不直接响应功率指令,而是根据超级电容荷电状态进行充放电的功率分配方法。最后介绍了在该功率分配方法下超级电容的容量设计依据,并结合直驱型波浪发电输出功率的波动特性给出了算例。 相似文献