共查询到19条相似文献,搜索用时 86 毫秒
1.
为提高非侵入式负荷分解的准确率,更准确地挖掘电力用户的用电信息,提出了基于机器学习XGBoost算法的非侵入式负荷分解方法。以决策树中的回归树模型为基础,通过梯度提升树得到由回归树构成的强评估器。同时,以损失函数和模型复杂度为目标函数,并引入叶子结点,得到更准确的XGBoost非侵入式负荷识别模型。在公开数据集(Referenceenergy disaggregation data set,REDD)上对模型进行了验证。结果表明,所提方法能大幅提高非侵入式负荷识别的准确性。 相似文献
2.
非侵入式负荷监测(Non-Intrusive Load Monitoring,NILM)通过采集用户侧智能电表的电气特征数据,进行数据挖掘与分析,能够有效的实现负荷辨识。在家用电器功率、电流、电压波形及各次谐波特征的数据中,采用核主成分分析方法(Kernel Principal Components Analysis,KPCA),解决非线性特征提取与降维,最大限度抽取特征信息。再利用一维卷积核提取时序特征并压缩后输入到XGBoost模型,得到负荷辨识结果。在实验数据集上进行了验证,证明文中提出算法的泛化性和执行效率方面有较大优势。 相似文献
3.
非侵入式电力负荷分解是根据入口处电流、电压信号进行用电负荷辨识的一种方法。然而,由于电流、电压波动等因素干扰,单一特征所得到的分解结果通常会与实际用电设备投切结果不一致。为了可靠地提升在线非侵入式电力负荷分解能力,构建了基于谐波的电流特征表达并结合功率两个特征作为设备投切状态辨识的目标函数。同时,引入了正态分布的度量函数,将其融合并作为粒子群(Particle Swarm Optimization, PSO)算法的适应度函数,以此寻找最佳的电力负荷分解结果。最终,通过实验室开发的非侵入式负荷分解装置进行实验。实验结果表明所述方法能获得更好的在线电力负荷分解能力。 相似文献
4.
5.
了解用户负荷分布特征是智能电网建设的重要部分,非侵入式负荷监测(Non-Intrusive Load Monitoring, NILM)以其便捷、高效、成本低的优点被电力系统工作人员广泛认可。文中提出了一种基于长短期记忆网络的NILM方法,通过采集用户电力入口处的电流波形并进行数据处理,得到用户的负荷特征数据。使用主成分分析手段,减少负荷特征数量,提高运算效率。使用擅长处理连续数据的长短期记忆网络模型,在划分好的验证集与测试集上对模型优劣进行评价,以获得最优参数模型。预测实验结果显示,文中所设计的非侵入式负荷监测方法可以对包括小功率用电器在内的家用电器进行准确辨别。 相似文献
6.
智能量测技术是智能电网的重要组成部分,文章为增强非侵入式家庭负荷辨识算法的适用性,提出了一种负荷低频监测技术,结合居民用电行为与外部非电力负荷特征相关特性,建立一种基于随机森林的家庭负荷监测模型,在该模型中,选取常用的电气特征以及引入诸如居民负荷使用的时间特征等外部数据特征,通过互信息分析方法筛选与用电行为关联度高的多维特征量,进而采用随机森林算法对居民用电行为进行建模,从而实现对不同家庭各个类型的负荷进行有效监测。算法运行在AMPds公开数据集上,与贝叶斯分类算法进行比较,验证了所提算法的有效性。 相似文献
7.
非侵入式负荷监测通过在总电力接口处安装智能电表,实时采集和分析用户用电信息,从而监测各个用电设备的工作状态。针对电力系统中家庭用户负荷变化呈现的不同特性,提出一种基于VMD-CNN的非侵入式负荷监测方法。首先对采集到的负荷信号进行预处理,用变分模态分解方法将原始负荷功率信号分解成不同频率的有限带宽子序列,然后用Hilbert算法提取低频信号特征并将其输入到卷积神经网络中,再通过网络的自动学习能力学习各模态分量的不同特征,最后用全连接网络对用电设备进行分类,得到各个设备的用电情况。为了验证该方法,采用UK-DALE数据集进行实验验证,并与不同的分类算法进行对比。实验结果证明该方法适用于负荷监测且负荷监测精度达到了0.98。 相似文献
8.
随着多能源网络的融合和能源互联网技术的快速发展,家庭用能管理在解决各个能源网络节点供需问题上扮演着重要的角色。现有的大多数家庭用能管理针对已知用电负荷进行优化,未考虑用电设备类型的多样化和用电设备突增的情形。基于非侵入式负荷监测(Noninvasive Load Monitoring,NILM)算法可以有效获取家庭用电负荷、规律和用电信息,为家庭智慧用能管理提供数据支撑。文中以家庭用电成本、温度、时间、舒适度为目标函数建立家庭智慧用能多目标优化模型,对可控负荷、电动汽车、储能系统进行分析建立数学模型,利用粒子群算法对模型进行求解。仿真结果表明,基于NILM监测算法,考虑用电成本和舒适度家庭用电成本降低至72.5%;当用户可控用电负荷增加时,NILM算法可以实时更新控制策略降低用户用电成本;对不同用户进行多次计算,净成本和计算时间波动较小,证明了算法的合理性、可靠性。 相似文献
9.
针对目前非侵入终端辨识能力评价测试中缺少真实环境多样化模拟手段的问题,设计了一套基于模拟环境的检测系统。以非侵入终端的应用场景和核心辨识功能测试需求为基础,对系统进行了硬件环境、软件功能及测试方法的总体设计;以普适性调研手段分析电器应用规律,研究测试案例库构建方法,构建测试场景集;提出基于随机抽样和粒子群优化相结合的测试方案优化方法,提升测试场景的客观性和科学性。最后以江苏需求侧管理技术实验室的非侵入终端检测平台的建设为例,对本文研究成果进行应用及验证。结果显示,系统可提升测试方案的科学性、客观性和经济性,满足非侵入终端批量测试需求。 相似文献
10.
非侵入式负荷监测技术是在用户进线端对数据进行采集,通过采集的数据对用电器的特征进行分析,从而达到识别用电器的种类和挡位的目的,对智能家居、智慧电网的发展具有重大意义。本文从数据库提取的方式进行分类,首先介绍了非侵入式负荷检测的优点和基本框架,再通过对暂态特征和稳态特征两类提取方法的优缺点进行举例和分析,了解到二者的不足;其次,通过叙述组合的优点说明了结合的优势,该方法不仅解决了两类数据库的不足也达到了取长补短的目的。最后,结合之前的特征提取方法对未来的研究方向进行了总结与展望。 相似文献
11.
12.
为了进一步拓展监督学习方法在非侵入式负荷辨识中的应用,提出了一种关联循环神经网络(Recurrent Neural Networks, RNN)模型的负荷辨识方法。在该方法中,首先引入了时间窗负荷事件检测方法,提取谐波分量作为负荷特征,并将负荷特征作为RNN模型的输入。然后根据其对历史输入特征量的记忆建立由输入映射到输出的内在关联,从而建立面向时间序列输入的RNN负荷辨识方法。进一步地,为了避免"梯度消失"问题,选择了最佳的激活函数和损失函数。最后,通过单负荷辨识、多负荷辨识的实测实验,证实了所提关联RNN模型的负荷辨识方法能够有效地实现用户内部负荷设备状态的辨识要求。 相似文献
13.
传统边缘侧电力设备无法有效检测出对电网影响较大的冲击性负荷的设备类别与功率启停信息。为此,提出一种基于孪生分支网络的非侵入式冲击负荷辨识方法。通过总线入口处的高频采样数据提取波形的V-I轨迹特征和对角高斯谐波特征;预设多种先验信息对不同设备的冲击负荷特性进行训练,特别地,设计一种基于孪生分支结构的卷积神经网络,利用二分类交叉熵损失函数实现冲击负荷的分类辨识,同时引入最小平方误差损失函数对冲击负荷功率进行分解;使用非侵入式的方式并基于ARM Cortex-M4平台进行算法部署与识别测试。对比不同识别算法对冲击负荷的辨识能力,结果表明,当电网发生大功率冲击性波动时,孪生分支网络可以更准确地识别冲击负荷的设备类别,有效提高了对冲击负荷的辨识效果。 相似文献
14.
负荷投切事件是关联负荷分类、辨识的一个重要依据,为了能够准确的实现非侵入式负荷投切过程的辨识,提出一种基于KM算法投切事件匹配的非侵入式负荷辨识方法。在该方法中,首先采用一种功率曲线拟合逼近的方式进行负荷事件检测,并利用投切稳态特征建立用电设备投入和切除特征的概率分布模型。同时,考虑到负荷投入事件和切除事件数量不对等情况,将负荷事件与数据库负荷进行匹配,并采用加权优化的KM算法寻找最佳解,从而实现负荷投入和切除的正确匹配辨识。最后,在真实的测试场景并结合REDD数据集进行实验,结果表明文中方法能对负荷投切事件进行有效匹配辨识,为实现能耗细分奠定了基础。 相似文献
15.
为更好地挖掘大量采集数据蕴含的有效信息,提高短期负荷预测精度,文中提出一种基于小波变换与双向门控循环单元(BiGRU)、全连接神经网络(NN)混合模型的短期负荷预测方法。文章利用小波变换将负荷特征数据分解为高频数据以及低频数据,再分别建立高频混合神经网络以及低频混合神经网络模型进行预测。在混合神经网络模型中,将负荷特征数据作为BiGRU-NN网络的输入,利用BiGRU-NN网络学习负荷非线性以及时序性特征,以此进行短期负荷预测。文中以丹麦东部地区的负荷数据作为算例,实验结果表明,该方法与GRU神经网络、DNN神经网络、CNN-LSTM神经网络相比,具有更高的预测精度。 相似文献
16.
准确的电力系统负荷预测对电力系统安全稳定运行具有重要意义,为提高负荷预测精度,采用变分模态分解(variational mode decomposition,VMD)预处理数据,将原始日负荷曲线分解为不同频率的子序列,降低数据不规律性对负荷预测带来的干扰。使用Piecewise模糊映射策略进行改进,解决鲸鱼优化算法(whale optimization algorithm,WOA)受初值影响容易陷入局部最优的问题。使用非线性收敛因子代替线性收敛因子,进一步提升WOA的全局寻优能力和局部探索能力,得到非线性收敛因子的混沌鲸鱼优化算法(nonlinear convergence factor of the chaotic whale optimization algorithm,NCWOA)优化最小二乘支持向量机(least square support vector machine,LSSVM)的组合预测模型(VMD-NCWOA-LSSVM)。测试结果表明本文所提模型可以降低预测值的最大相对误差和平均绝对百分误差,有效提高短期电力负荷预测的精度。 相似文献
17.
18.
用户侧负荷资源数量众多、容量不均,分布零散,响应潜力强,具备参与电网调节的能力。基于负荷工作时功率、电流等特征差异,建立负荷特征指纹库,提出面向居民电器的非侵入式负荷辨识方法,实现居民用能的在线分解。基于同类电器特征相似的特点,在同一台区下,提出由下至上的台区负荷需求响应能力在线聚合监测方法,实现台区负荷资源参与需求响应能力的评估。在通过REDD数据集和某台区拓扑的测试,表明该方法对居民负荷具有较好的辨识度,对台区负荷资源需求响应能力很好地监测,为未来负荷侧泛在资源的整合及协调利用提供了方式和途径。#$NL关键词:非侵入式; 负荷辨识; 需求响应; 聚合监测#$NL中图分类号:TM73 相似文献
19.
针对未知家电负荷背景下基于智能电表采样数据进行异常负荷识别问题,以电动车入户充电负荷为出发点,提出了 一种基于边缘计算的用户异常负荷识别方法。首先通过 Boruta-SHAP 算法对非侵入式负荷数据的14种特征进行排序筛选, 得到在秒级负荷数据下的辨识效果最佳的特征子集;然后采用改进的非平行支持向量机(v-non parallel support vector ma- chine,v-NPSVM) 模型进行异常负荷识别模型的训练;最后结合边缘计算技术将算法部署到边缘计算平台上,实现对典型电 动车充电负荷的识别。实验基于低压台区中智能电表获取的真实负荷数据进行验证,并进一步对数据进行降频处理以验证 更低频数据源下方法的有效性,实验结果表明针对降频后的异常负荷识别的正确辨识率仍在90%以上,证明了在未知家电负 荷背景下方法具有较好的适用性和准确性。 相似文献