首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
现实生活中的图像大多具有多种标签属性。对于多标签图像,理想情况下检索到的图像应该按照与查询图像相似程度降序排列,即与查询图像共享的标签数量依次递减。然而,大多数哈希算法主要针对单标签图像检索而设计的,而且现有用于多标签图像检索的深度监督哈希算法忽略了哈希码的排序性能且没有充分地利用标签类别信息。针对此问题,提出了一种具有性能感知排序的深度监督哈希方法(deep supervised hashing with performance-aware ranking,PRDH),它能够有效地感知和优化模型的性能,改善多标签图像检索的效果。在哈希学习部分,设计了一种排序优化损失函数,以改善哈希码的排序性能;同时,还加入了一种空间划分损失函数,将具有不同数量的共享标签的图像划分到相应的汉明空间中;为了充分地利用标签信息,还鲜明地提出将预测标签用于检索阶段的汉明距离计算,并设计了一种用于多标签分类的损失函数,以实现对汉明距离排序的监督与优化。在三个多标签基准数据集上进行的大量检索实验结果表明,PRDH的各项评估指标均优于现有先进的深度哈希方法。  相似文献   

2.
目的 哈希是大规模图像检索的有效方法。为提高检索精度,哈希码应保留语义信息。图像之间越相似,其哈希码也应越接近。现有方法首先提取描述图像整体的特征,然后生成哈希码。这种方法不能精确地描述图像包含的多个目标,限制了多标签图像检索的精度。为此提出一种基于卷积神经网络和目标提取的哈希生成方法。方法 首先提取图像中可能包含目标的一系列区域,然后用深度卷积神经网络提取每个区域的特征并进行融合,通过生成一组特征来刻画图像中的每个目标,最后再产生整幅图像的哈希码。采用Triplet Loss的训练方法,使得哈希码尽可能保留语义信息。结果 在VOC2012、Flickr25K和NUSWIDE数据集上进行多标签图像检索。在NDCG(normalized discounted cumulative gain)性能指标上,当返回图像数量为 1 000时,对于VOC2012,本文方法相对于DSRH(deep semantic ranking hashing)方法提高24个百分点,相对于ITQ-CCA(iterative quantization-canonical correlation analysis)方法能提高36个百分点;对于Flickr25,本文方法比DSRH方法能提高2个左右的百分点;对于NUSWIDE,本文方法相对于DSRH方法能提高4个左右的百分点。对于平均检索准确度,本文方法在NUSWIDE和Flickr25上能提高25个百分点。根据多项评价指标可以看出,本文方法能以更细粒度来精确地描述图像,显著提高了多标签图像检索的性能。结论 本文新的特征学习模型,对图像进行细粒度特征编码是一种可行的方法,能够有效提高数据集的检索性能。  相似文献   

3.
郭一村  陈华辉 《计算机应用》2021,41(4):1106-1112
在当前大规模数据检索任务中,学习型哈希方法能够学习紧凑的二进制编码,在节省存储空间的同时能快速地计算海明空间内的相似度,因此近似最近邻检索常使用哈希的方式来完善快速最近邻检索机制.对于目前大多数哈希方法都采用离线学习模型进行批处理训练,在大规模流数据的环境下无法适应可能出现的数据变化而使得检索效率降低的问题,提出在线哈...  相似文献   

4.
无监督的深度哈希学习方法由于缺少相似性监督信息,难以获取高质量的哈希编码.因此,文中提出端到端的基于伪成对标签的深度无监督哈希学习模型.首先对由预训练的深度卷积神经网络得到的图像特征进行统计分析,用于构造数据的语义相似性标签.再进行基于成对标签的有监督哈希学习.在两个常用的图像数据集CIFAR-10、NUS-WIDE上的实验表明,经文中方法得到的哈希编码在图像检索上的性能较优.  相似文献   

5.
目的 服装检索对于在线服装的推广和销售有着重要的作用。而目前的服装检索算法无法准确地检索出非文本描述的服装。特别是对于跨场景的多标签服装图片,服装检索算法的准确率还有待提升。本文针对跨场景多标签服装图片的差异性较大以及卷积神经网络输出特征维度过高的问题,提出了深度多标签解析和哈希的服装检索算法。方法 该方法首先在FCN(fully convolutional network)的基础上加入条件随机场,对FCN的结果进行后处理,搭建了FCN粗分割加CRFs(conditional random fields)精分割的端到端的网络结构,实现了像素级别的语义识别。其次,针对跨场景服装检索的特点,我们调整了CCP(Clothing Co-Parsing)数据集,并构建了Consumer-to-Shop数据集。针对检索过程中容易出现的语义漂移现象,使用多任务学习网络分别训练了衣物分类模型和衣物相似度模型。结果 我们首先在Consumer-to-Shop数据集上进行了服装解析的对比实验,实验结果表明在添加了CRFs作为后处理之后,服装解析的效果有了明显提升。然后与3种主流检索算法进行了对比,结果显示,本文方法在使用哈希特征的条件下,也可以取得较好的检索效果。在top-5正确率上比WTBI(where to buy it)高出1.31%,比DARN(dual attribute-aware ranking network)高出0.21%。结论 针对服装检索的跨场景效果差、检索效率低的问题,本文提出了一种基于像素级别语义分割和哈希编码的快速多目标服装检索方法。与其他检索方法相比,本文在多目标、多标签服装检索场景有一定的优势,并且在保持了一定检索效果的前提下,有效地降低了存储空间,提高了检索效率。  相似文献   

6.
刘冶  潘炎  夏榕楷  刘荻  印鉴 《计算机科学》2016,43(9):39-46, 51
在大数据时代,图像检索技术在大规模数据上的应用是一个热门的研究领域。近年来,大规模图像检索系统中, 图像哈希算法 由于具备提高图像的检索效率同时减少储存空间的优点而受到广泛的关注。现有的有监督学习哈希算法存在一些问题,主流的有监督的哈希算法需要通过图像特征提取器获取人为构造的图像特征表示,这种做法带来的图像特征损失影响了哈希算法的效果,也不能较好地处理图像数据集中语义的相似性问题。随着深度学习在大规模数据上研究的兴起,一些相关研究尝试通过深度神经网络进行有监督的哈希函数学习,提升了哈希函数的效果,但这类方法需要针对数据集人为设计复杂的深度神经网络,增大了哈希函数设计的难度,而且深度神经网络的训练需要较多的数据和较长的时间,这些问题影响了基于深度学习的哈希算法在大规模数据集上的应用。针对这些问题,提出了一种基于深度卷积神经网络的快速图像哈希算法,该算法通过设计优化问题的求解方法以及使用预训练的大规模深度神经网络,提高了哈希算法的效果,同时明显地缩短了复杂神经网络的训练时间。根据在不同图像数据集上的实验结果分析可知, 与现有的基准算法相比,提出的算法在哈希函数训练效果和训练时间上都具有较大的提高。  相似文献   

7.
为了提高无监督哈希学习的性能,实现鲁棒的哈希图像检索,提出了一种鲁棒的双教师自监督蒸馏哈希学习方法。该方法包括自监督双教师学习和鲁棒哈希学习两个阶段:第一阶段设计了一种改进的聚类算法,有效提高了硬伪标签的标注精度,而后通过微调教师网络得到了图像的初始软伪标签;第二阶段提出了一种结合混合去噪和双教师共识去噪策略的软伪标签去噪方法,有效去除了初始软伪标签中的噪声,而后利用蒸馏学习将双教师网络中的信息通过去噪软伪标签传递给学生网络,进而获得无标签图像的鲁棒哈希码。在CIFAR-10,FLICKR25K和EuroSAT上进行了实验,实验结果表明,与TBH方法相比,在CIFAR-10上所提方法的MAP平均提高了18.6%;与DistillHash方法相比,在FLICKR25K上所提方法的MAP平均提高了2.4%;与ETE-GAN方法相比,在EuroSAT上所提方法的MAP平均提高了18.5%。  相似文献   

8.
针对基于概率统计的ML-kNN算法只能对每个独立的标签进行分析,忽略了真实世界中标签间的相关性,提出了一种联系标签相关性的ML-kNN算法(S-ML-kNN).该方法对训练集进行扩展,并按照标签间的二阶组合来构造新的标签,融合了标签之间的相关性.实验结果表明,S-ML-kNN算法优于ML-kNN算法.  相似文献   

9.
现有图像感知算法侧重于减少相似图像感知哈希值间的差异性,较少关注增大不同图像感知哈希值间的差异性问题.针对这一局限性,提出并实现循环贯序差分和拉普拉斯算子两种基于差分的图像感知哈希算法,并分别在小规模相似图像集合和大规模不同图像集合上进行测试.与现有图像感知哈希算法相比,所提算法体现了图像像素点间的局部关联性,增加了不...  相似文献   

10.
由于较低的检索时间和空间复杂度,哈希方法被广泛应用于大规模图像检索领域。提出深度多监督哈希(Deep Multi-Supervised Hashing,DMSH)方法来学习具有高度判别能力和紧凑的哈希编码,并进行有效的图像检索。设计一个新的卷积神经网络结构来产生相似性保留的哈希编码,用一个识别信号来增加类间距离,用一个验证信号来降低类间距离。同时,通过正则化的方式降低网络输出和二进制哈希编码之间的损失并使二进制哈希值在每一维上均匀分布使网络输出更接近离散的哈希值。在两个数据集上的实验证明了该方法能够快速编码任意新的图像并取得先进的检索结果。  相似文献   

11.
针对目前相似性视频检索方法中快速性和准确性仍无法满足用户要求等问题,提出了一种基于3D卷积神经网络的视频快速检索方法。该算法将3D卷积神经网络与哈希学习方法结合应用于视频数据,既能快速学习视频时空特征表示,又能极大地缩短视频检索时间。在常用视频数据集上的实验结果表明,利用所提出的方法对视频进行相似性检索性能优于当前主流方法。  相似文献   

12.
An algorithm for selecting the concatenated hash code for partial-match or multiple-attribute retrieval in a hashing scheme is presented. The optimal code length for each attribute is determined with respect to a merit function. Two adjustment algorithms are then presented to find the optimal code length under the integer and nonnegative lower bound constraints. Finally, an algorithm is given for incremental expansion of the concatenated hash code in an extendible hashing scheme.This research was supported by the Defense Advanced Research Projects Agency under Contract MDA903-78-C-0293, and the National Science Foundation under Grant NCS78-05978.  相似文献   

13.
目的 医学图像检索在疾病诊断、医疗教学和辅助症状参考中发挥了重要作用,但由于医学图像类间相似度高、病灶易遗漏以及数据量较大等问题,使得现有哈希方法对病灶区域特征的关注较少,图像检索准确率较低。对此,本文以胸部X-ray图像为例,提出一种面向大规模胸片图像的深度哈希检索网络。方法 在特征学习部分,首先采用ResNet-50作为主干网络对输入图像进行特征提取得到初步特征,将该特征进行细化后获得全局特征;同时将初步特征输入构建的空间注意模块,该注意模块结合了3个描述符用于聚焦胸片图像中的显著区域,将该模块的输出进行细化得到局部特征;最后融合全局特征与局部特征用于后续哈希码优化。在哈希码优化部分,使用定义的二值交叉熵损失、对比损失和正则化损失的联合函数进行优化学习,生成高质量的哈希码用于图像检索。结果 为了验证方法的有效性,在公开的ChestX-ray8和CheXpert数据集上进行对比实验。结果显示,构建空间注意模块有助于关注病灶区域,定义特征融合模块有效避免了信息的遗漏,联合3个损失函数进行优化可以获得高质量哈希码。与当前先进的医学图像检索方法比较,本文方法能够有效提高医学图像检索的准确率...  相似文献   

14.
Minimum Squared Error Classification (MSEC) is a learning method for predicting the class labels of samples in real time. However, as a regression algorithm, MSEC tries its best to map the training samples into their class labels using a linear projection without considering the manifold structure of the data. In this paper, we introduce a supervised label learning framework using an effective manifold learning strategy. This method which is referred to as Manifold Supervised Label Prediction (MSLP) generalizes MSEC objective function to incorporate intra-class relationships of data. Thus, in addition to relying on the relationship between a training sample and its label, we propose to also learn the relationship between the training samples while transforming them. As a testbed for MSLP, we apply it to an image identification venue in which image samples with a very low spatial resolution (16 × 16) are used. These images have been dramatically influenced by a down-sampling process in order to reduce their size and hence, improving over computation time. We also show that the blurring process for reducing the artifacts introduced by down-sampling serendipitously results in better identification accuracies. Finally, unlike MSEC that classifies a query sample based on the deviation between the predicted and the true class labels, we compare both the training and the query samples in the label prediction space. A set of comprehensive experiments on benchmark palmprint databases including Multispectral PolyU, PolyU 2D/3D, and PolyU Contact-free I shows meaningful improvements over existing state-of-the-art algorithms.  相似文献   

15.
韩丽娜  石昊苏 《计算机工程与设计》2006,27(21):4084-4085,4167
等值线图在气象,地质测绘领域有着广泛的应用。目前,人们对于等值线的研究都集中在等值线的生成和填充上,而忽视了等值线的标注。而一个完整的等值线分析系统应该包括等值线的生成,填充,和标注。提出了一种等值线标注的算法,通过先找出等值线的近似多边形,然后根据系统要求在等值线上或近似多边形上输出标注。给等值线上添加标注,给标选择合适的位置,方向和疏密程度,将会使等值线图看起来更加直观、形象,使人们从图中就可获得更多的相关信息。  相似文献   

16.
通过把概率等级的融合模型和马尔可夫随机场MRF应用于聚类分析模型上来实现图像分割方法,该方法能够更加准确地进行图像分割过程,并最终获得相关融合模型.结合先验概率分布,这种基于能量的Gibbs模型允许指定参数,最大概率等级估计与简单快捷的估计方法进行融合得到分割结果.将此融合框架成功应用在Berkeley图像标准数据库,相关实验结果表明了该方法有效的视觉评价和定量的性能指标,执行结果相比现有分割方法更为突出.  相似文献   

17.
重叠社区结构挖掘旨在发现复杂网络中多个独立社区之间的重叠部分,其在社交、交通、舆情乃至反恐等领域具有广泛的应用。然而,目前基于标签传播的重叠社区挖掘算法在社区结构模糊的网络中表现出较强的随机性,导致准确度不高。针对重叠社区模糊边界导致的不确定性和低准确度问题,提出一种融合特征向量中心性与标签熵的标签传播算法ECLE-LPA。ECLE-LPA通过融合节点的K-核迭代因子与特征向量中心性来计算节点影响力并初始化节点标签,在标签传播过程中,通过节点标签熵和节点间亲密度更新节点标签列表及其标签隶属度,从而较好地克服了社区模糊边界的识别问题。实验结果表明:在Les Miserables、Polbooks、Football、Polblogs和Netscience等真实网络中,ECLE-LPA划分结果的EQ值普遍比对比算法提高了1%~3%;在社区结构模糊的人工网络中,ECLE-LPA划分结果的NMI值比其他标签传播算法提高了10%以上。  相似文献   

18.
针对尺度不变特征SIFT配准算法中检测到的特征点不具有均匀分布的特性,实现了均匀性特征检测方法,同时对像素点设置标志位对检测步长进行动态调整。均匀性特征检测方法能够检测到更有效、更具有代表性的特征点,从而得到更加精确的图像变换关系;设置标志位对动态步长进行调整,可以进一步减少检测的次数。将带标志位的均匀性特征检测SIFT算法应用于图像的配准,实验表明改进算法的性能得到了有效提高。  相似文献   

19.
韩亚茹  闫连山  姚涛 《计算机应用》2022,42(7):2015-2021
随着移动互联网技术的发展,图像数据的规模越来越大,大规模图像检索任务已经成为了一个紧要的问题。由于检索速度快和存储消耗低,哈希算法受到了研究者的广泛关注。基于深度学习的哈希算法要达到较好的检索性能,需要一定数量的高质量训练数据来训练模型。然而现存的哈希方法通常忽视了数据集存在数据类别非平衡的问题,而这可能会降低检索性能。针对上述问题,提出了一种基于元学习网络的深度哈希检索算法。所提算法可以直接从数据中自动学习加权函数。该加权函数是只有一个隐含层的多层感知机(MLP),在少量无偏差元数据的指导下,加权函数的参数可以和模型训练过程中的参数同时进行优化更新。元学习网络参数的更新方程可以解释为:较符合元学习数据的样本权重将被提高,而不符合元学习数据的样本权重将被减小。基于元学习网络的深度哈希检索算法可以有效减少非平衡数据对图像检索的影响,并可以提高模型的鲁棒性。在CIFAR-10等广泛使用的基准数据集上进行的大量实验表明,在非平衡比率较大时,所提算法的平均准确率均值(mAP)最佳;在非平均比率为200的条件下,所提算法的mAP比中心相似度量化算法、非对称深度监督哈希(ADSH)算法和快速可扩展监督哈希(FSSH)算法分别提高0.54个百分点,30.93个百分点和48.43个百分点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号