共查询到20条相似文献,搜索用时 79 毫秒
1.
2.
知识库问答(KBQA)是指利用知识库中的一个或多个知识三元组回答一个自然语言问题,需要检测问题中提及的知识库实体和关系.关系检测是知识库问答的核心.为了解决现有关系检测方法存在的匹配视角单一和信息瓶颈问题,本文提出了一种多视角层次匹配网络(M-HMN,Multi-view Hierarchical Matching Network),M-HMN利用双向注意力机制对齐问题与候选关系的不同特征,强化两者匹配部分的观察精细度,将匹配信息封装成向量,再由自注意力机制有效聚合多个向量以进行正确关系检测.对于KBQA最终任务的评估,本文提出一种简易的实体重排序算法,利用M-HMN网络优化候选实体集.实验结果表明,M-HMN能有效缓解关系检测的信息瓶颈问题,而提出的实体重排序算法能够进行实体消歧,获得更小更为精准的候选实体集,对KBQA最终任务性能有显著的提升. 相似文献
3.
针对网络入侵检测性能不高的问题,提出一种基于空时特征融合和注意力机制的深度学习入侵检测模型CTA-net。该模型通过集成卷积神经网络(CNN)和长短时记忆网络(LSTM)获取空时融合特征,然后使用注意力模块(Attention)对输入的空时融合特征进行重要性加权计算,最后通过softmax函数进行分类。使用NSL-KDD数据集的实验结果表明,相比具有相似结构的CNN模型和空时融合的CNN-LSTM模型,在训练集的收敛性具有显著的提升,在测试集上使用的分类评价指标准确率分别提升10.9120个百分点和11.8740个百分点,精确率分别提升9.1950个百分点和9.6130个百分点,召回率分别提升9.1780个百分点和9.9340个百分点,F1-SCORE分别提升10.7830个百分点和11.7500个百分点。仿真结果表明,所提出的CTA-net模型在网络入侵检测方面具有较好的应用潜力。 相似文献
4.
针对航空发动机剩余可用寿命(RUL)预测任务中代表性特征提取不充分导致RUL预测精度较低等问题, 提出了一种基于多特征融合的航空发动机RUL预测方法. 利用指数平滑法(ES)降低原始数据中的噪声干扰, 得到相对平稳的特征数据. 使用双向长短期记忆网络(Bi-LSTM)提取特征数据的时序特征, 利用多头注意力机制(Multi-attention)为时序特征赋予权重; 设计卷积长短期记忆网络(Conv-LSTM)提取特征数据的时空特征; 提取特征数据的手工特征并使用Softmax函数计算权重. 设计一个特征融合框架将上述特征进行融合, 然后通过全连接网络回归实现最终RUL预测. 使用C-MAPSS数据集对模型进行仿真验证, 与Bi-LSTM等模型进行对比, 模型RUL预测精度更高, 适应性更好. 相似文献
5.
6.
针对域名生成算法生成的恶意域名隐蔽性高,现有方法在恶意域名检测上准确率不高的问题,提出一种基于Transformer和多特征融合的DGA域名检测方法。该方法使用Transformer编码器捕获域名字符的全局信息,通过并行深度卷积神经网络获取不同粒度的长距离上下文特征,同时引入双向长短期记忆网络BiLSTM和自注意力机制Self-Attention结合浅层CNN得到浅层时空特征,融合长距离上下文特征和浅层时空特征进行DGA域名检测。实验结果表明,所提方法在恶意域名检测方法上有更好的性能。相对于CNN、LSTM、L-PCAL和SW-DRN,所提方法在二分类实验中准确率分别提升了1.72%,1.10%,0.75%和0.34%;在多分类实验中准确率分别提升了1.75%,1.29%,0.88%和0.83%。 相似文献
7.
词语作为文本构成中最具有语义表达的单位,将词语更多的特征如形态学、词性、词性权重等融入到词语语义的表达中,将提升文本相似度量的准确性.该文提出一种融合词语多特征的汉老短文本相似度计算方法,首先利用双向长短期记忆网络(BiLSTM)和卷积神经网络(CNN)分别提取汉老词语的形态学特征,将词向量拼接上形态学特征向量、词性向量、词性权重向量,然后利用BiLSTM和CNN提取汉老短文本的上下文特征和局部语义特征,接着加入ESIM交互注意力机制使汉老语义信息进行交互.最后计算汉老特征语义向量的相对差和相对积,将其结果拼接并输入到全连接层得到汉老双语短文本的相似度分数.实验结果表明,本文提出的方法在有限的语料下取得了更好的效果,F1值达到了78.67%. 相似文献
8.
网络社交平台中大量谣言的广泛传播严重影响社会稳定.传统谣言检测方法无法有效处理文本中多义词和突出重要关键词,造成检测效果不理想.针对该问题,提出一种基于BERT模型的增强混合神经网络的谣言检测方法.该方法使用BERT模型将推文向量化,通过3种不同尺寸的卷积核学习推文特征,将这些特征进行最大池化拼接得到特征序列,并输入到... 相似文献
9.
10.
11.
基于深度学习的多标签文本分类方法存在两个主要缺陷:缺乏对文本信息多粒度的学习,以及对标签间约束性关系的利用.针对这些问题,提出一种多粒度信息关系增强的多标签文本分类方法.首先,通过联合嵌入的方式将文本与标签嵌入到同一空间,并利用BERT预训练模型获得文本和标签的隐向量特征表示.然后,构建3个多粒度信息关系增强模块:文档级信息浅层标签注意力分类模块、词级信息深层标签注意力分类模块和标签约束性关系匹配辅助模块.其中,前两个模块针对共享特征表示进行多粒度学习:文档级文本信息与标签信息浅层交互学习,以及词级文本信息与标签信息深层交互学习.辅助模块通过学习标签间关系来提升分类性能.最后,所提方法在3个代表性数据集上,与当前主流的多标签文本分类算法进行了比较.结果表明,在主要指标Micro-F1、MacroF1、nDCG@k、P@k上均达到了最佳效果. 相似文献
12.
复句的关系识别是为了区分句子语义关系的类别,是自然语言处理(NLP)中必不可少的基础研究任务。现有研究无法使机器在表层判别缺少显式句间连接词句子的语义关系类型。该文将Attention机制与图卷积神经网络(GCN)相结合应用到汉语复句语义关系识别中,通过BERT预训练模型获取单句词向量,输入到Bi-LSTM获取句子位置表示,经Attention机制得到各位置间权重构建图网络以捕获句子间的语义信息,通过图卷积抽取深层的关联信息。该文的方法对缺少显式句间连接词句子的关系识别达到了较好的识别效果,为进一步研究计算机自动分析、识别处理复句的基本方法奠定基础。实验结果表明,在汉语复句语料库(CCCS)和汉语篇章树库(CDTB)数据集上,与先前最好的模型相比,其准确率分别为77.3%和75.7%,提升约1.6%,宏平均F1值分别为76.2%和74.4%,提升约2.1%,说明了该文方法的有效性。 相似文献
13.
目的 在近岸合成孔径雷达(synthetic aperture radar, SAR)图像舰船检测中,由于陆地建筑及岛屿等复杂背景的影响,小型舰船与周边相似建筑及岛屿容易混淆。现有方法通常使用固定大小的方形卷积核提取图像特征。但是小型舰船在图像中占比较小,且呈长条形倾斜分布。固定大小的方形卷积核引入了过多背景信息,对分类造成干扰。为此,本文针对SAR图像舰船目标提出一种基于可变形空洞卷积的骨干网络。方法 首先用可变形空洞卷积核代替传统卷积核,使提取特征位置更贴合目标形状,强化对舰船目标本身区域和边缘特征的提取能力,减少背景信息提取。然后提出3通道混合注意力机制来加强局部细节信息提取,突出小型舰船与暗礁、岛屿等的差异性,提高模型细分类效果。结果 在SAR图像舰船数据集HRSID(high-resolution SAR images dataset)上的实验结果表明,本文方法应用在Cascade-RCNN(cascade region convolutional neural network)、YOLOv4(you only look once v4)和BorderDet(border d... 相似文献
14.
针对当前基于深度学习的边缘检测技术产生的边缘线条杂乱且模糊等问题,提出了一种基于RCF的端到端的跨层融合多尺度特征的边缘检测(CFF)模型。该模型使用RCF作为基线,在主干网络中加入CBAM,采用具有平移不变性的下采样技术,并且去除了主干网络中的部分下采样操作,以保留图像的细节信息,同时使用扩张卷积技术增大模型感受野。此外,采用跨层融合特征图的方式,使得高低层特征能够充分融合。为了平衡各阶段损失和融合损失之间的关系,以及避免出现多尺度特征融合之后低层细节过度丢失的现象,对每个损失添加了一个权重。在伯克利分割数据集(BSDS500)和PASCAL VOL Context数据集上进行了训练,在测试时使用图像金字塔技术提高边缘图像的质量。实验结果表明,CFF模型提取的轮廓比基线网络更加清晰,能够解决边缘模糊问题。在BSDS500基准上进行的评估表明,该模型将最佳数据集规模(ODS)和最佳图像比例(OIS)指标分别提高到0.818和0.839。 相似文献
15.
目的 随着深度伪造技术的快速发展,人脸伪造图像越来越难以鉴别,对人们的日常生活和社会稳定造成了潜在的安全威胁。尽管当前很多方法在域内测试中取得了令人满意的性能表现,但在检测未知伪造类型时效果不佳。鉴于伪造人脸图像的伪造区域和非伪造区域具有不一致的源域特征,提出一种基于多级特征全局一致性的人脸深度伪造检测方法。方法 使用人脸结构破除模块加强模型对局部细节和轻微异常信息的关注。采用多级特征融合模块使主干网络不同层级的特征进行交互学习,充分挖掘每个层级特征蕴含的伪造信息。使用全局一致性模块引导模型更好地提取伪造区域的特征表示,最终实现对人脸图像的精确分类。结果 在两个数据集上进行实验。在域内实验中,本文方法的各项指标均优于目前先进的检测方法,在高质量和低质量FaceForensics++数据集上,AUC(area under the curve)分别达到99.02%和90.06%。在泛化实验中,本文的多项评价指标相比目前主流的伪造检测方法均占优。此外,消融实验进一步验证了模型的每个模块的有效性。结论 本文方法可以较准确地对深度伪造人脸进行检测,具有优越的泛化性能,能够作为应对当前人脸伪造威胁... 相似文献
16.
目前关系抽取方法中,传统深度学习方法存在长距离依赖问题,并且未考虑模型输入与输出的相关性。针对以上问题,提出了一种将LSTM模型(Long Short-term memory)与注意力机制(Attention Mechanism)相结合的关系抽取方法。首先将文本信息向量化,提取文本局部特征;然后将文本局部特征导入双向LSTM模型中,通过注意力机制对LSTM模型的输入与输出之间的相关性进行重要度计算,根据重要度获取文本整体特征;最后将局部特征和整体特征进行特征融合,通过分类器输出分类结果。在SemEval-2010 Task 8语料库上的实验结果表明,该方法的准确率和稳定性较传统深度学习方法有进一步提高,为自动问答、信息检索以及本体学习等领域提供了方法支持。 相似文献
17.
18.
针对单次多盒检测算法(SSD)对复杂背景下合成孔径雷达(SAR)图像舰船目标的检测容易出现误检或漏检情况,提出一种基于融合注意力机制与改进的SSD算法的目标检测方法。首先在SSD算法上引入ResNet网络并进行改进,以提供丰富的语义信息和细节信息,提高算法的鲁棒性;其次融合通道和空间注意力增强对舰船目标的辨认能力,抑制海杂波等干扰信息;同时改进损失函数来解决舰船密集分布时的漏检问题,提高网络训练效果。数据集上的实验表明,该方法平均准确率(mAP)为87.6%,比SSD算法提高了4.2个百分点,目标的漏检和误检明显减少。相比SSD算法,该算法对复杂背景下的舰船目标有较好的辨别能力和鲁棒性,抗干扰能力有所提升。 相似文献
19.
针对传统视频摘要算法没有充分利用视频的多模态信息、难以确保摘要视频片段时序一致性的问题,提出了一种融合多模态特征与时区检测的视频摘要算法(MTNet)。首先,通过GoogLeNet与VGGish预训练模型提取视频图像与音频的特征表示,设计了一种维度平滑操作对齐两种模态特征,使模型具备全面的表征能力;其次,考虑到生成的视频摘要应具备全局代表性,因此通过单双层自注意力机制结合残差结构分别提取视频图像与音频特征的长范围时序特征,获取模型在时序范围的单一向量表示;最后,通过分离式时区检测与权值共享方法对视频逐个时序片段的摘要边界与重要性进行预测,并通过非极大值抑制来选取关键视频片段生成视频摘要。实验结果表明,在两个标准数据集SumMe与TvSum上,MTNet的表征能力与鲁棒性更强;它的F1值相较基于无锚框的视频摘要算法DSNet-AF以及基于镜头重要性预测的视频摘要算法VASNet,在两个数据集上分别有所提高。 相似文献
20.
针对室内人群目标尺度和姿态多样性、人头目标易与周围物体特征混淆的问题,提出了一种基于多级特征和混合注意力机制的室内人群检测网络(MFANet)。该网络结构包括三部分,即特征融合模块、多尺度空洞卷积金字塔特征分解模块以及混合注意力模块。首先,通过将浅层特征和中间层特征信息融合,形成包含上下文信息的融合特征,用于解决浅层特征图中小目标语义信息不丰富、分类能力弱的问题;然后,利用空洞卷积增大感受野而不增加参数的特性,对融合特征进行多尺度分解,形成新的小目标检测分支,实现网络对多尺度目标的定位和检测;最后,用局部混合注意力模块来融合全局像素关联空间注意力和通道注意力,增强对关键信息贡献大的特征,来增强网络对目标和背景的区分能力。实验结果表明,所提方法在室内监控场景数据集SCUT-HEAD上达到了0.94的准确率、0.91的召回率和0.92的F1分数,在召回率、准确率和F1指标上均明显优于当前用于室内人群检测的其他算法。 相似文献