首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 64 毫秒
1.
提出了一种基于BOC调制信号的频域主瓣叠加捕获算法。该算法利用BOC调制信号功率谱主瓣与BPSK信号功率谱的相似性,在对接收的BOC调制信号进行上、下边带主瓣滤取,将两主瓣信号分别搬移到中心频率,实现两路信号叠加的基础上,通过与本地信号的相关处理,执行同步捕获。仿真分析表明,本文提出的频域主瓣叠加捕获算法不仅能够实现正确的信号同步捕获,而且捕获精度和性能优于现有的边带和BPSK-like捕获算法。  相似文献   

2.
深度学习目前已广泛应用到各个领域,目标检测是计算机视觉领域中的基础问题。针对传统目标检测算法存在的效率低、鲁棒性差等问题,基于深度学习的目标检测算法很好地提高了目标检测效率,成为主流趋势。论文对一些典型的基于深度学习的目标检测算法进行了综述,主要分为基于区域思想和基于回归思想两方面,对算法结构进行了分析和对比,最后对基于深度学习的目标检测算法的发展进行了展望。  相似文献   

3.
史文旭  鲍佳慧  姚宇 《计算机应用》2005,40(12):3558-3562
为解决目前的遥感图像目标检测算法存在的对小尺度目标检测精度低和检测速度慢等问题,提出了一种基于深度学习的遥感图像目标检测与识别算法。首先,构建一个含有不同尺度大小的遥感图像的数据集用于模型的训练和测试;其次,基于原始的多尺度单发射击(SSD)网络模型,融入了设计的浅层特征融合模块、浅层特征增强模块和深层特征增强模块;最后,在训练策略上引入聚焦分类损失函数,以解决训练过程中正负样本失衡的问题。在高分辨率遥感图像数据集上进行实验,结果表明所提算法的检测平均精度均值(mAP)达到77.95%,相较于SSD网络模型提高了3.99个百分点,同时检测速度为33.8 frame/s。此外,在拓展实验中,改进算法对高分辨率遥感图像中模糊目标的检测效果也优于原多尺度单发射击网络模型。实验结果说明,所提改进算法能够有效地提高遥感图像目标检测的精度。  相似文献   

4.
史文旭  鲍佳慧  姚宇 《计算机应用》2020,40(12):3558-3562
为解决目前的遥感图像目标检测算法存在的对小尺度目标检测精度低和检测速度慢等问题,提出了一种基于深度学习的遥感图像目标检测与识别算法。首先,构建一个含有不同尺度大小的遥感图像的数据集用于模型的训练和测试;其次,基于原始的多尺度单发射击(SSD)网络模型,融入了设计的浅层特征融合模块、浅层特征增强模块和深层特征增强模块;最后,在训练策略上引入聚焦分类损失函数,以解决训练过程中正负样本失衡的问题。在高分辨率遥感图像数据集上进行实验,结果表明所提算法的检测平均精度均值(mAP)达到77.95%,相较于SSD网络模型提高了3.99个百分点,同时检测速度为33.8 frame/s。此外,在拓展实验中,改进算法对高分辨率遥感图像中模糊目标的检测效果也优于原多尺度单发射击网络模型。实验结果说明,所提改进算法能够有效地提高遥感图像目标检测的精度。  相似文献   

5.
针对低信噪比环境下传统匹配滤波算法在LoRa信号解调中误码率较高的问题,提出了一种基于深度学习的LoRa信号识别方法。设计的监督学习神经网络由输入层、卷积层、全连接层、分类层和输出层组成,利用不同信噪比的加性高斯白噪声信道模型生成的LoRa接收信号对神经网络模型进行训练,再将训练好的神经网络应用于LoRa解调的信号识别。仿真实验表明,在系统扩频因子为7且误码率为10-4时,卷积神经网络的信噪比相比传统的匹配滤波解调方法提升了5~6 dB,相应的自由空间传输距离提升了80%~90%。  相似文献   

6.
7.
俞汝劼  杨贞  熊惠霖 《计算机应用》2017,37(6):1702-1707
针对军用机场大尺寸卫星图像中航空器检测识别的具体应用场景,建立了一套实时目标检测识别框架,将深度卷积神经网络应用到大尺寸图像中的航空器目标检测与识别任务中。首先,将目标检测的任务看成空间上独立的bounding-box的回归问题,用一个24层卷积神经网络模型来完成bounding-box的预测;然后,利用图像分类网络来完成目标切片的分类任务。大尺寸图像上的传统目标检测识别算法通常在时间效率上很难突破,而基于卷积神经网络的航空器目标检测识别算法充分利用了计算硬件的优势,大大缩短了任务耗时。在符合应用场景的自采数据集上进行测试,所提算法目标检测实时性达到平均每张5.765 s,在召回率65.1%的工作点上达到了79.2%的精确率,分类网络的实时性达到平均每张0.972 s,Top-1错误率为13%。所提框架在军用机场大尺寸卫星图像中航空器检测识别的具体应用问题上提出了新的解决思路,同时保证了实时性和算法精度。  相似文献   

8.
首先,介绍了现阶段目标检测的发展并进行分类;然后阐述了YOLO系列算法,特别是YOLO中重要的核心机制,如损失函数、网络结构、优化策略、k-means聚类和批归一化;其次,对YOLO的应用场景进行介绍,如应用于行人检测、工业以及医学方面;最后,总结YOLO系列算法的特点以及未来改进方向。本文对研究基于深度学习的目标检测系统具有一定的指导意义。  相似文献   

9.
随着价格低廉WiFi设备的广泛部署,无处不在的WiFi信号在人体感知和身份识别方面得到了应用。现有基于WiFi的人体身份识别大多依赖人的步态特征,需要人在WiFi收发设备间来回走动,这种方法限制了识别的速度、规模和应用场景。针对这一不足,本文提出了一种静态、非接触式快速人体身份识别方法,首先基于人体生物特征影响的射频信号生成特有的信道状态信息(CSI)指纹,这种静态的特征可以提高多人识别的效率;然后对信号进行数据增强和主成分分析(PCA)以减少训练时间和存储空间;最后将预处理后的数据进行多层深度卷积神经网络(DCNN)处理,提取出辨别性特征并进行身份识别。实验结果表明,所提方法可以在多达35人场景下进行快速识别,平均识别精度为95%,优于现有的方法。  相似文献   

10.
11.
随着数字图像篡改技术不断的革新换代,传统的取证方法已经无法对抗最新的多媒体篡改手段和技术,尤其是深度造假及深度学习技术带来的全新挑战。总结提炼了包括图像预处理模块、特征提取模块及分类结果后处理模块的通用数字图像取证框架,并在提出的框架基础之上分析现有相关研究的优缺点,同时归纳了数字图像取证面临的挑战并指明未来的发展方向。  相似文献   

12.
航空遥感图像目标检测旨在定位和识别遥感图像中感兴趣的目标,是航空遥感图像智能解译的关键技术,在情报侦察、灾害救援和资源勘探等领域具有重要应用价值。然而由于航空遥感图像具有尺寸大、目标小且密集、目标呈任意角度分布、目标易被遮挡、目标类别不均衡以及背景复杂等诸多特点,航空遥感图像目标检测目前仍然是极具挑战的任务。基于深度卷积神经网络的航空遥感图像目标检测方法因具有精度高、处理速度快等优点,受到了越来越多的关注。为推进基于深度学习的航空遥感图像目标检测技术的发展,本文对当前主流遥感图像目标检测方法,特别是2020—2022年提出的检测方法,进行了系统梳理和总结。首先梳理了基于深度学习目标检测方法的研究发展演化过程,然后对基于卷积神经网络和基于Transformer目标检测方法中的代表性算法进行分析总结,再后针对不同遥感图象应用场景的改进方法思路进行归纳,分析了典型算法的思路和特点,介绍了现有的公开航空遥感图像目标检测数据集,给出了典型算法的实验比较结果,最后给出现阶段航空遥感图像目标检测研究中所存在的问题,并对未来研究及发展趋势进行了展望。  相似文献   

13.
深度学习在遥感影像分类中的研究进展   总被引:1,自引:0,他引:1  
随着遥感技术和计算机技术的不断发展,传统的遥感影像分类方法已不能满足如今遥感影像分类的需求。近年来,随着深度学习方面研究成果的不断涌现,它给遥感影像的分类提供了一种新的思路和方法。首先概述了遥感影像分类的发展和深度学习的基本概念,然后重点介绍了基于深度置信网、卷积神经网络和栈式自动编码器等深度学习模型在遥感影像分类中的研究进展,最后提出了目前研究中存在的问题及遥感影像分类的发展趋势。  相似文献   

14.
针对课堂教学场景遮挡严重、学生众多,以及目前的视频行为识别算法并不适用于课堂教学场景,且尚无学生课堂行为的公开数据集的问题,构建了课堂教学视频库以及学生课堂行为库,提出了基于深度时空残差卷积神经网络的课堂教学视频中实时多人学生课堂行为识别算法.首先,结合实时目标检测和跟踪,得到每个学生的实时图片流;接着,利用深度时空残...  相似文献   

15.
针对人体动作深度视频的四维信息映射到二维空间后,动作分类容易发生混淆的问题,提出一种基于深度学习的人体动作识别方法。首先构建空间结构动态深度图,将深度视频的四维信息映射到二维空间,进行信息降维处理;然后提出基于联合代价函数的深度卷积神经网络,结合交叉熵损失函数与中心损失函数作为联合代价函数,指导卷积层学习到更具分辨力的深度特征,以进行更精确的分类。在MSRDailyActivity3D和SYSU 3D HOI两个数据集的实验结果表明,与现有方法相比,该方法识别率得到了较明显的提升,验证了其有效性和鲁棒性。该方法较好地解决了动作分类容易发生混淆的问题。  相似文献   

16.
织物缺陷在线检测是纺织行业面临的重大难题,针对当前织物缺陷检测中存在的误检率高、漏检率高、实时性不强等问题,提出了一种基于深度学习的织物缺陷在线检测算法。首先基于GoogLeNet网络架构,并参考其他分类模型的经典算法,搭建出适用于实际生产环境的织物缺陷分类模型;其次利用质检人员标注的不同种类织物图片组建织物缺陷数据库,并用该数据库对织物缺陷分类模型进行训练;最后对高清相机在织物验布机上采集的图片进行分割,并将分割后的小图以批量的方式传入训练好的分类模型,实现对每张小图的分类,以此来检测缺陷并确定其位置。对该模型在织物缺陷数据库上进行了验证。实验结果表明:织物缺陷分类模型平均每张小图的测试时间为0.37 ms,平均测试时间比GoogLeNet减少了67%,比ResNet-50减少了93%;同时模型在测试集上的正确率达到99.99%。说明其准确率与实时性均满足实际工业需求。  相似文献   

17.
系统日志反映了系统运行状态,记录着系统中特定事件的活动信息,快速准确地检测出系统异常日志,对维护系统安全稳定具有重要意义。提出了一种基于GRU神经网络的日志异常检测算法,基于log key技术实现日志解析,利用执行路径的异常检测模型和参数值的异常检测模型实现日志异常检测,具有参数少、训练快的优点,在取得较高检测精度的同时提升了运行速度,适用于大型信息系统的日志分析。  相似文献   

18.
由于现有的基于深度神经网络的显著性对象检测算法忽视了对象的结构信息,使得显著性图不能完整地覆盖整个对象区域,导致检测的准确率下降。针对此问题,提出一种结构感知的深度显著性对象检测算法。算法基于一种多流结构的深度神经网络,包括特征提取网络、对象骨架检测子网络、显著性对象检测子网络和跨任务连接部件四个部分。首先,在显著性对象子网络的训练和测试阶段,通过对象骨骼检测子网络学习对象的结构信息,并利用跨任务连接部件使得显著性对象检测子网络能自动编码对象骨骼子网络学习的信息,从而感知对象的整体结构,克服对象区域检测不完整问题;其次,为了进一步提高所提方法的准确率,利用全连接条件随机场对检测结果进行进一步的优化。在三个公共数据集上的实验结果表明,该算法在检测的准确率和运行效率上均优于现有存在的基于深度学习的算法,这也说明了在深度神经网络中考虑对象结构信息的捕获是有意义的,可以有助于提高模型准确率。  相似文献   

19.
目标检测是计算机视觉研究领域的核心问题和最具挑战性的问题之一,随着深度学习技术的广泛应用,目标检测的效率和精度逐渐提升,在某些方面已达到甚至超过人眼的分辨水平.但是,由于小目标在图像中覆盖面积小、分辨率低和特征不明显等原因,现有的目标检测方法对小目标的检测效果都不理想,因此也诞生了很多专门针对提升小目标检测效果的方法....  相似文献   

20.
目标跟踪是利用一个视频或图像序列的上下文信息,对目标的外观和运动信息进行建模,从而对目标运动状态进行预测并标定目标位置的一种技术,是计算机视觉的一个重要基础问题,具有重要的理论研究意义和应用价值,在智能视频监控系统、智能人机交互、智能交通和视觉导航系统等方面具有广泛应用。大数据时代的到来及深度学习方法的出现,为目标跟踪的研究提供了新的契机。本文首先阐述了目标跟踪的基本研究框架,从观测模型的角度对现有目标跟踪的历史进行回顾,指出深度学习为获得更为鲁棒的观测模型提供了可能;进而从深度判别模型、深度生成式模型等方面介绍了适用于目标跟踪的深度学习方法;从网络结构、功能划分和网络训练等几个角度对目前的深度目标跟踪方法进行分类并深入地阐述和分析了当前的深度目标跟踪方法;然后,补充介绍了其他一些深度目标跟踪方法,包括基于分类与回归融合的深度目标跟踪方法、基于强化学习的深度目标跟踪方法、基于集成学习的深度目标跟踪方法和基于元学习的深度目标跟踪方法等;之后,介绍了目前主要的适用于深度目标跟踪的数据库及其评测方法;接下来从移动端跟踪系统,基于检测与跟踪的系统等方面深入分析与总结了目标跟踪中的最新具体应用情况,最后对深度学习方法在目标跟踪中存在的训练数据不足、实时跟踪和长程跟踪等问题进行分析,并对未来的发展方向进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号