共查询到17条相似文献,搜索用时 62 毫秒
1.
2.
针对交通流预测过程中城市道路路网的空间特征难以充分提取,导致预测结果精度不高的问题,提出图卷积网络(GCN)与门控循环单元(GRU)组合短时交通流预测模型.利用GCN对拓扑结构数据处理的优势,将城市道路路网空间排列结构转换为拓扑关系建模,通过解决拓扑关系问题有效提取出路网间的空间特征.采用Graph-SAGE算法改进G... 相似文献
3.
为了捕获交通流量数据中复杂的时空动态变化关系以及周期性变化的特征,同时避免道路突发情况引起的误差累计效应,提出一种基于周期图卷积(periodic graph convolution network, PGCN)与多头注意力门控循环单元(multi-head attention gated recurrent unit, MAGRU)组合的交通流量预测模型。首先,模型的时空数据融合模块利用交通流量的周期相似性构建周期图,同时将空间和时间编码信息添加至交通流量序列数据;然后在时空特征提取模块中,GCN子模块捕获周期特征图中的空间特征,MAGRU子模块捕获序列数据中的时间特征;最后通过门控融合机制将两者提取的时空特征进行融合。模型在两个真实的交通流量数据集上进行了实验。结果表明,该模型相较于多个最新基准模型,在MAE、RMSE、MAPE三个预测误差指标上平均降低了5.4%、22.8%、10.3%,R2精确度指标平均提高了11.6%。说明模型在预测精度方面有显著的改进,并能有效减少误差累积效应。 相似文献
4.
5.
交通流预测在交通管理和城市规划的应用中具有重要意义,然而现有的预测方法无法充分挖掘其潜在的复杂时空相关性,为进一步挖掘路网道路网络数据的时空特性以提高预测精度,提出一种多时空图卷积网络(multi-spatial-temporal graph convolutional network,MST-GCN)模型。首先,利用切比雪夫图卷积(ChebNet)结合门控循环单元(GRU)构建时空组件以深度挖掘节点的时空相关性;其次,分别提取周相关、日相关、邻近时间的序列数据,输入三个时空组件以深度挖掘不同时间窗口间的时间相关性;最后,将时空组件与编码器—解码器网络结构(encoder-decoder)融合组建MST-GCN模型。利用加利福尼亚州交通局(Caltrans)性能评估系统中高速公路数据集PEMS04和PEMS08进行实验,结果表明新模型的性能明显优于门控循环单元模型和最近提出的扩散卷积循环神经网络(DCRNN)、时间图卷积网络(T-GCN)、基于注意力机制的时空图卷积神经网络(ASTGCN)和时空同步图卷积网络(STSGCN)模型。 相似文献
6.
针对现有的交通流预测模型未能精确捕获交通数据的时空特征,以及大部分模型都是在单步预测中体现出良好的预测性能,在多步预测中模型的预测性能显得并不理想的问题,提出了一种基于门控卷积的时空交通流预测模型(GC-STTFPM)。首先,利用图卷积网络(GCN)结合门控循环单元(GRU)来捕获交通流数据的时空特征;然后提出了一种利用卷积门控单元对原始数据和时空特征数据进行拼接与筛选处理的方法来对时空特征数据的有效性进行校验;最后,将GRU作为解码器来对未来交通流作出准确可靠的预测。在洛杉矶公路的交通数据集上的实验结果表明,GC-STTFPM在单步预测(5 min)中与基于注意力的时空图神经网络(ASTGNN)和扩散卷积递归神经网络(DCRNN)相比,平均绝对误差(MAE)分别降低了5.9%和9.9%,均方根误差(RMSE)分别降低了1.7%和5.8%。同时,GC-STTFPM在15、30、60 min三个多步尺度下的预测精度优于大多数现有基准模型,具有较强的适应性和鲁棒性。 相似文献
7.
刘传 《计算机与数字工程》2023,(4):860-865
经典的视觉注意力模型缺乏视觉对象间空间关系的推理能力,忽略了图像和问题文本之间的密集语义交互,导致在预测答案过程中对噪声的处理能力不足。针对上述问题,提出了一种基于门控图卷积网络和协同注意力的视觉问答模型。该模型基于图像中视觉对象之间的相对空间位置构建空间关系图;同时以问题为引导,在图卷积网络的基础上增加门控机制,能够动态控制具有不同空间关系的邻居对节点的贡献程度;然后将问题的词特征和带有空间关系感知能力的视觉特征输入双向引导的协同注意力模块,共同学习它们之间的密集语义交互。在VQA2.0数据集进行实验,结果表明:该模型具有较强的显式关系推理能力,在test-std测试集的总体准确率为70.90%,优于该数据集上的经典模型,有效地提升了视觉问答的准确率。 相似文献
8.
准确的交通流预测能够为管理部门提供合理的决策依据,为驾驶员提供实时的道路状况预警,是交通领域至关重要的问题.近年来,相关研究利用图卷积神经网络(GCN)处理非欧式空间结构的特点,对来自复杂路网的交通流数据进行空间相关性建模.然而,现有基于图卷积的交通流预测方法未能充分考虑空间相关性的有向性和动态性这两个重要特点.考虑到... 相似文献
9.
交通流量预测是智能交通系统中的重要组成部分,但由于交通流量受交通状况、地理位置、时间等多种因素影响,使其具有高度非线性与复杂性,实现精准预测的难度较大。针对交通站点的出入流量预测问题,提出一种基于上下文门控的时空多图卷积网络(CG-STMGCN)模型。根据站点间的相邻关系与流通流量关系构造邻居图与流通流量图表示站点流量之间的邻近相关性与流量依赖性,在两图上分别建立基于上下文门控的时空卷积模块捕获站点流量的时空特征,并使用哈达玛乘积融合两图的输出作为最终预测结果。在真实交通站点数据集上的实验结果表明,CG-STMGCN模型的预测准确性优于同类预测方法,且稳定性更强。 相似文献
10.
实体关系抽取在自然语言处理中十分重要,针对图卷积网络中特征提取不准确,循环神经网络梯度模糊等问题,提出了一种融合门控循环单元(GRU)和注意力机制的图卷积关系抽取模型。通过加入双向GRU对输入的上下文信息进行处理,获得更为细致的特征以此对长期依赖信息进行学习,并进一步利用多头注意力机制对不同类型的边与节点进行权重分配,过滤多余信息,增强节点间的关联性,最后利用图卷积得到最终的关系抽取结果。针对SemEval-2010Task8和SemEval-2010Task4数据集中对其进行测试,实验表明该方法提高了其F1值,能够实现关系的有效提取。 相似文献
11.
交通流预测是智能交通系统中的重要组成部分,由于交通数据的复杂性,长期而又准确的交通流预测一直是时间序列预测中最具挑战性的任务之一。近年来,研究人员将基于图神经网络的时空图建模方法应用于交通流预测任务,并取得了良好的预测性能。然而,现有的图建模方法仅通过预定义的邻接结构反映道路网络中的空间依赖关系,忽略了各节点之间的序列关联关系对预测的重要性。针对这一局限性,提出了一种自适应门控图神经网络(Ada-GGNN),其核心为通过空间传递模块同时捕获道路网络的空间结构及自适应的时序相关性,并通过门控机制学习节点上的时间序列特征。在两个真实交通网络数据集PeMSD7和Los-loop上的实验结果证明了该模型具有更优越的性能。 相似文献
12.
交通流量预测是建设智慧城市中一项重要性高且挑战性大的任务。准确预测需要考虑如节假日、相似节点和天气等多种影响因素组成的时空特征。为了准确捕获到路网路口的时空特征,提出了一种基于图卷积神经网络、时序算法Prophet和Pearson相关系数的预测模型,以实现考虑空间结构、相似节点、节假日及其他影响因素对路口流量的准确预测。首先,为降低相似节点影响引入Pearson相关系数,改进时序算法,实现时间特征的捕捉;然后,采用图卷积神经网络实现空间特征的捕捉;最后,通过线性回归确定图卷积网络和时序算法的融合权重,得到时空融合预测的结果。最终基于成都市出租车轨迹数据分析提取出路口流量数据,并进行了流量预测实验。结果表明,提出的模型准确性优于大多现有的基线方法,与T-GCN、ASTGCN、AGCRN模型相比,MAE分别降低了1.623、0.724、0.161,精度分别提高了0.144、0.068、0.021,验证了该模型在交通路口流量预测中的有效性。 相似文献
13.
现有时序知识图谱推理主要是基于静态知识图谱的推理方法,通过知识图谱的结构特征挖掘潜在的语义信息和关系特征,忽略了实体时序信息的重要性,因此提出一种基于实体活跃度及复制生成机制的时序知识图谱推理方法(EACG)。首先,通过改进的图卷积神经网络对多关系实体建模,有效挖掘知识图谱的潜在语义信息和结构特征。其次,时序编码器基于实体活跃度学习实体的时序特征。最后,使用复制生成机制进一步学习知识图谱的历史信息,提升对时序数据建模的能力。在时序知识图谱数据集ICEWS14、ICEWS05-15、GDELT上推理的实验结果表明,EACG在MRR评估指标中分别优于次优方法2%、10%和5%。 相似文献
14.
现有的网络流量预测模型存在着泛化能力弱和预测准确率低等问题,为了解决此问题,提出了一种结合动态扩散卷积模块和卷积交互模块的预测模型。动态扩散卷积模块可以提取网络流量中复杂的空间特征和动态特性,而卷积交互模块则能捕获到流量中的时间特征,两者的有机结合可以有效预测网络中的流量。通过与其他网络流量预测模型在美国能源科学网(ESnet)流量数据上进行对比实验,验证了提出的动态扩散卷积交互图神经网络模型(DDCIGNN)的有效性。实验结果表明,DDCIGNN模型的均方根误差(RMSE)在最好的情况下优化了大约13.0%,说明该模型能够进行更有效的网络流量预测。 相似文献
15.
交通状况预测是智能交通系统的一个重要组成部分,而车流量是交通状况最直接的体现,因而对交通流量进行预测具有重要的应用价值。一方面,城市中的道路本身带有空间拓扑性质,另一方面车流量随时间动态变化。因此交通流量预测问题的关键在于对数据中存在的时间和空间依赖进行建模。针对这一特性,使用神经网络模型和注意力机制来探索交通流量数据中的时空依赖关系,提出基于时间图注意力的交通流量预测模型。空间依赖方面,使用图卷积网络与注意力结合的学习算法对不同影响程度节点分配不同的权重,加入节点自适应学习,有效提取空间特征;时间依赖方面,使用时序卷积网络对时间特征进行提取,通过扩张卷积扩大感受域从而捕获较长时间序列数据的特征。由图注意力网络和时间卷积网络构成一个时空网络层,最终连接到输出层输出预测结果。该模型使用图卷积神经网络和注意力机制结合的方式提取空间特征,充分考虑了道路间的空间关系,利用时序卷积网络捕获时间特征。在两个真实的数据集上进行实验后发现,在未来15 min、30 min、60 min的时间段内该模型都有良好表现,结果优于现有基准模型。 相似文献
16.
实时、准确的交通流预测是智能交通诱导实现的前提和关键。针对BP神经网络学习过程收敛速度慢、容易陷入局部极小的缺点,引入智能神经元组成的广义神经网络建立交通流预测模型,同时给出基于训练集分解和动态通信模式的并行学习算法来提高广义神经网络的收敛速度,并利用大连市的实际交通流数据进行预测分析。实验结果表明,并行广义神经网络能够满足交通流量预测实时性、精确性的要求,具有一定的应用价值。 相似文献
17.
针对电力信息网络中的高级持续性威胁问题,提出一种基于混合卷积神经网络(CNN)和循环神经网络(RNN)的入侵检测模型。该模型根据网络数据流量的统计特征对当前网络状态进行分类。首先,获取日志文件中网络流量的各统计值,进行特征编码、归一化等预处理工作;然后,通过深度卷积神经网络中可变卷积核提取不同主机入侵流量之间空间相关特征;最后,将已经处理好的包含空间相关特征的数据在时间上错开排列,利用深度循环神经网络挖掘入侵流量的时间相关特征。实验结果表明,该模型相对于传统的机器学习模型在曲线下方的面积(AUC)上提升了7.5%~14.0%,同时误报率降低了83.7%~52.7%。所提模型能准确地识别网络流量的类别,大幅降低误报率。 相似文献