首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
以电解锰渣为主要原料制备电解锰渣免烧砖,研究了成型压力对电解锰渣免烧砖抗压、抗折强度,体积密度和线收缩率,吸水率和饱和系数及泛霜的影响,并对其进行XRD分析。结果表明:在水泥比为16.7%,骨料比为28%,含水率为32%的条件下,当成型压力为20 MPa时,电解锰渣免烧砖的28 d抗压、抗折强度分别为17.88 MPa和3.3 MPa,体积密度为1.53 g/cm3,线收缩率为0.75%,吸水率为21.9%,饱和系数为1.15,无泛霜现象产生,强度满足国标MU15免烧砖要求,其他性能指标均符合国标免烧砖一等品要求。  相似文献   

2.
采用商洛铁尾矿制备堆积密度小于 300 kg/m3且抗压碎强度较高的超轻陶粒。研究原料配方、发泡剂含量、烧成温度及保温时间对铁尾矿基超轻陶粒性能的影响。结果表明,采用 80% 铁尾矿、10% 钾钠石粉和 10% 高岭土为原料,加入 0.6% 的 Si C 为发泡剂,经球磨、成型、烧成后可制备铁尾矿基超轻陶粒,堆积密度为 228 kg/m3,抗压碎强度为 1.07 MPa,筒压强度为 5.31 MPa,吸水率为 9.58%。采用该铁尾矿基超轻陶粒为轻骨料制备陶粒混凝土,抗折强度较聚苯颗粒混凝土提高 162%,抗压强度提高 400%。  相似文献   

3.
以铁尾矿为原料,粉煤灰为成分校正剂制备高强轻质陶粒。利用热分析仪(TG-DSC)和X射线衍射仪(XRD)分析了原料的热反应过程,确定陶粒烧制温度范围。设计正交试验研究了成分配比、烧制温度、高温区升温速率和保温时间对陶粒堆积密度、表观密度、吸水率和筒压强度的影响,优化陶粒制备工艺。结果显示,陶粒的原料配比对堆积密度和表观密度影响较大,而烧制温度对吸水率和筒压强度影响较大。料球中Al2O3含量为17%,以10℃/min的速度升温至1 000℃,再以25℃/min的速度升温至1 210℃,保温30 min,所制备陶粒堆积密度888.20 kg/m3,表观密度为1 907.14 kg/m3,筒压强度为8.34 MPa,1 h吸水率为5.04%,满足国标GB/T 17431.1—2010中规定的900级轻质高强陶粒性能要求,为高硅铁尾矿的综合利用提供了一条新途径。   相似文献   

4.
以直接还原选矿尾渣为主要原料,添加城市污水处理厂剩余污泥制备轻质陶粒,考察了烧制过程中各主要因素(预热温度、预热时间、焙烧温度、焙烧时间和原料配比)对陶粒性能(表观密度、堆积密度、1 h吸水率和颗粒强度)的影响,最终确定了烧制陶粒的最佳工艺条件。结果表明,尾渣与污泥的最佳质量比为尾渣∶污泥=95∶5,烧制陶粒的最佳工艺条件为:预热温度550℃,预热时间30 min,焙烧温度1 110℃,焙烧时间6 min,此时制得的陶粒表观密度为1.365 g/cm3,堆积密度0.672 g/cm3,1 h吸水率3.50%,颗粒强度220 N,筒压强度3.5 MPa。  相似文献   

5.
利用赤泥制备高强陶粒的试验研究   总被引:1,自引:0,他引:1  
利用拜耳法赤泥、页岩和粉煤灰等原料制备了高强陶粒。赤泥掺入量为50%时, 陶粒堆积密度840 kg/m3, 筒压强度达到7.5 MPa,强度标号45 MPa, 1 h吸水率7.6%, 表观密度1 000 kg/m3,孔隙率16.0%, 放射性能够满足作为轻集料的活度要求。利用XRD、SEM等分析手段, 对赤泥陶粒烧结机理进行了探讨。  相似文献   

6.
对锰渣原料进行了显微镜下分析、X射线衍射线分析,表明锰渣主要矿物成分为粘土矿物、石膏、褐铁矿、菱锰矿及硅质矿物.利用化学成分分析得出锰渣中主要含有SiO2、Fe2O3、CaO、Al2O3、MnO及SO3.在利用锰渣制备矿物聚合物材料试验中,开展了利用煅烧的高岭土、石英砂制备矿物聚合物试验.观察了制备的矿物聚合物材料固化现象和抗压性能.以锰渣为主要原料制备矿物聚合物最佳配比为:锰渣:高岭土:石英砂=10:1:1;碱激发剂Hn占固体粉料质量的2.08%,水玻璃占液体质量的15.15%,此时材料抗压强度为10.25 MPa.  相似文献   

7.
以不同取代率的硅锰渣复合粉煤灰作为硅质原料,采用免蒸压工艺制备加气混凝土,对比了不同掺量 的硅锰渣对免蒸压加气混凝土干密度、含水率、吸水率、抗压强度等性能的变化规律;对性能指标进行无量纲处理,建 立免蒸压加气混凝土的性能指标多因素影响回归模型,通过偏相关性分析,得到不同性能指标与自变量的相关性程 度;并采用扫描电镜(SEM)对不同配合比加气混凝土的内部微观形貌及孔结构进行分析。 结果表明,随硅锰渣掺量 的增加,加气混凝土干密度增大,而含水率、吸水率变化幅度相对较小,抗压强度则随硅锰渣及硅灰掺量增加及水胶 比的变化而呈现不同的趋势;随硅锰渣掺量的增加,加气混凝土水化产物中托贝莫来石晶体数量减少,气孔多呈现连 通状态或扁平状态;当粉煤灰与硅锰渣质量比为 3 ∶1 时,加气混凝土抗压强度最高;在硅锰渣掺量为 100%,水胶比为 0. 35 时,试件仍能满足 A5. 0 级要求,从绿色环保及综合利用大宗固废的角度考虑,在制备加气混凝土过程中,尽量大 程度掺加硅锰渣是可行的。  相似文献   

8.
为拓展建筑石矿尾泥的资源化利用途径,开展了以新开元尾泥为主要原料、市政污泥及石灰石为添加剂制备高强陶粒的烧制试验,考察了原料组成及焙烧制度对陶粒堆积密度、吸水率、筒压强度等性质的影响。结果表明:在预热温度500℃、预热时间20 min、焙烧温度1 130℃、焙烧时间10 min时,以石矿尾泥80%、市政污泥10%及石灰石10%为原料,可以制得堆积密度760 kg/m3、吸水率2.6%、筒压强度10.3 MPa的高强陶粒;在高温焙烧阶段添加市政污泥,可以促进孔隙的形成,降低陶粒的密度,促使陶粒轻质化;石灰石的添加兼具造气和助熔的作用。  相似文献   

9.
激发剂对金川水淬二次镍渣胶结料强度的影响   总被引:2,自引:0,他引:2  
以脱硫石膏和电石渣为主激发剂、硫酸钠和水泥熟料为辅助激发剂,与金川公司镍冶炼渣熔态还原提铁后产生的水淬二次镍渣制成胶凝材料,再按胶砂比为1∶4与棒磨砂制成质量分数为79%的胶结料,着重考察激发剂用量对胶结料强度的影响。结果表明,当胶凝材料中二次镍渣、脱硫石膏、电石渣、硫酸钠、水泥熟料的质量分数分别为85%、5%、5%、3%、2%时,胶结料的28 d抗压和抗折强度分别达到3.42 MPa和1.96 MPa,满足井下充填用胶结料的强度要求。XRD、SEM分析结果显示,在激发剂作用下,二次镍渣胶凝材料中的玻璃相和结晶态物质均可发生水化反应,水化产物主要为钙矾石和含Ca2+、Mg2+的硅(铝)酸盐凝胶。  相似文献   

10.
以铁尾矿为主要原料,氢氧化钠和水玻璃混合液为碱激发剂,制备地质聚合物凝胶材料。利用单因素试验和正交试验研究了固体原料的组分、物料液固比、激发剂的模数和浓度对地质聚合物抗压强度的影响,并分析了各因素对地质聚合反应的作用机理。结果显示:各因素影响铁尾矿基地质聚合物抗压强度的主次顺序为:物料液固比>激发剂浓度>激发剂模数>固体原料硅铝比;当物料液固比n(Na_2O)/n(Al_2O_3)=0.8、激发剂浓度n(H_2O)/n(Na_2O)=7、激发剂模数n(SiO_2)/n(Na_2O)=1.6、固体原料硅铝比n(SiO_2)/n(Al_2O_3)=3.2时,试验制备的地质聚合物养护抗压强度最高,养护28 d时达到55.97 MPa。  相似文献   

11.
尾矿矿渣制备地质聚合物材料工艺条件的研究   总被引:2,自引:0,他引:2  
以矿渣和尾矿为主要原料,氢氧化钠为激发剂,工业液体硅酸钠作结构模板剂,制备了无机矿物聚合物材料,分别对不同制备条件的地质聚合物的7 d抗压强度进行测试。结果表明,尾矿质量为矿渣质量的80%时所得到的产品的抗压强度最大,为45.10 MPa。Na2SiO3与NaOH的质量比为50%∶50%时所得到的产品的抗压强度最大,为63.79 MPa。固液比为0.35时所得到的产品的抗压强度最大,达38.35 MPa。养护期为14 d时所得到的产品的抗压强度最大,达71.25 MPa。加入钢渣量为固体总量20%时抗压强度最大,为61.86 MPa。  相似文献   

12.
为了制备满足矿山要求的超细尾砂全固废充填胶凝材料, 基于均匀设计方案, 开展了全固废充填胶凝材料激发剂配比的胶结体强度试验, 结果表明, 矿渣粉配比量为全尾砂胶结充填体7 d及28 d抗压强度的主要影响因素, 脱硫石膏配比量对充填体7 d抗压强度影响较大, 而钢渣配比量影响28 d抗压强度。建立了胶凝材料配比优化模型, 利用智能算法的全局寻优, 获得低成本全固废充填胶凝材料最优配比为: 脱硫石膏20%、钢渣微粉33%、粉煤灰25%、矿渣微粉22%, 材料成本为34.92元/m3;根据该配比进行了室内制备试验, 结果显示, 充填体7 d和28 d抗压强度分别达到1.38 MPa和3.56 MPa, 并且随着反应龄期增加, 该材料体系中C-S-H凝胶和钙矾石的质量损失从3.64%增加到8.7%, 充填体强度呈增加趋势。采用该方法制备的胶凝材料能满足矿山要求。  相似文献   

13.
以铁尾矿和铜矿渣为原料,成功制备了尾矿渣复合胶凝材料。通过分析球磨时间、胶砂比、料浆浓度、矿渣用量、碱激发剂、水泥熟料、养护条件与胶凝材料力学性能的关系,探讨矿渣胶凝体系制备过程影响因素,确定矿渣胶凝材料制备工艺条件。当矿渣胶凝体系配比为铜矿渣∶石灰∶石膏=80%∶4%∶16%、矿渣胶凝体系球磨时间25min,充填体中矿渣胶凝体系∶水泥熟料∶氢氧化钠∶铁尾矿=20%∶5%∶0.5%∶74.5%、料浆浓度为75%时为充填材料的最好配比,在此条件下,5%水泥填料,试块28d抗压强度为3.62MPa。试验中尾矿渣复合胶凝材料制备研究满足矿山充填胶凝材料的需求。  相似文献   

14.
以钢渣和矿渣为主要原料,以水泥为碱性激发剂,以盐石膏为氯盐和硫酸盐复合激发剂,制备钢渣—矿渣基胶凝材料。实验结果表明,钢渣、矿渣、水泥和盐石膏的配比为40∶50∶5∶5时,其胶凝材料28 d的强度能够达到20.2 MPa。5%的水泥和5%的盐石膏足以激发钢渣—矿渣基胶凝材料。钢渣—矿渣基胶凝材料的抗压强度是随着矿渣含量的增加而增加。这种材料固废利用率95%,可用于强度要求不高的大体积充填工程。  相似文献   

15.
王雪  倪文  李佳洁  刘冰  张思奇 《金属矿山》2019,48(5):192-196
为了揭示脱硫石膏对钢渣基碳化建材制品性能的影响,研究了不同养护时间、脱硫石膏掺量对试件抗压强度、固碳效果的影响,以及固碳效果对试件抗压强度的影响。结果表明:①脱硫石膏与钢渣的质量比为6.25%时可显著改善钢渣基试件的强度和养护效率,水胶比为0.2,成型压强为9 MPa的试块碳化养护1 d的抗压强度达到32 MPa。②随着脱硫石膏掺量的增加,单位质量试块固碳量降低,而单位质量钢渣固碳量增大。③1 d和3 d的固碳量与抗压强度基本呈正相关关系,这是由于钢渣的水化反应缓慢,对早期强度贡献不大,碳化反应对试块抗压强度尤其是早期强度起关键的促进作用。④成型压强为27 MPa的试件6 h、10 h固碳量分别达1 d固碳量的76.21%和87.54%,养护6 h的试件抗压强度超过25 MPa。因此,试块经过6 h的碳化养护就可以得到符合强度要求的碳化产品。  相似文献   

16.
将钼尾矿、矿渣、水泥熟料、石膏进行机械力粉磨,制备胶凝材料,研究了胶凝材料掺量和砂率对混凝土力学性能的影响。结果表明,随着胶凝材料掺量的增加,混凝土的坍落度和混凝土试块的抗压强度均增大;随着砂率的增大,混凝土的坍落度和混凝土试块的抗压强度均先增大后减小。当胶凝材料和骨料质量比为1∶3.0,砂率为0.35时,养护28 d的混凝土试块的抗压强度达68.7 MPa。在钼尾矿胶凝材料体系中,C-S-H凝胶、AFt及氢氧化铁凝胶等水化产物相互交织,未参与反应的微细粒填充到体系的孔隙中,促进了胶凝材料强度的增长。  相似文献   

17.
硅钙渣是高铝粉煤灰提取氧化铝过程中排放的固体废弃物。为揭示以其为主要原料制备的硅钙渣基生态水泥的性能,以32.5#普通硅酸盐水泥为参照对象,以天然砂石为骨料、液态聚羧酸为减水剂,分别制备了等级为C30和C40的混凝土,比较了同等级的2种混凝土的力学性能和耐久性能。结果表明:1硅钙渣基生态混凝土的早期力学性能高于相同标号的普通混凝土,后期力学性能则发展缓慢,胶砂28 d的抗折、抗压强度分别达到8 MPa和40MPa以上。2硅钙渣基生态混凝土与普通混凝土相比具有优异的抗硫酸盐侵蚀性能和抗氯离子渗透性能;硅钙渣基生态混凝土14 d前(含14 d)的收缩率与普通混凝土相当,14 d后收缩率小于普通混凝土;C40硅钙渣基生态混凝土具有优异的抗碱骨料反应性能,其余耐久性能与普通混凝土相当。3硅钙渣基生态水泥对于Cr离子具有优异的固化特性。因此,硅钙渣基生态水泥总体性能优于32.5#普通硅酸盐水泥。  相似文献   

18.
以未经改性的镍石膏、钛矿渣和P·O42.5水泥为主要原料制备镍石膏-钛矿渣复合胶凝材料,通过物理力学性能及微观性能测试,分别研究了生石灰、矿物掺合料、硫铝酸盐水泥掺量和养护制度对镍石膏-钛矿渣复合胶凝材料物理力学性能的影响。结果表明,以生石灰作为碱性激发剂,掺量在6%时效果最好;加入4%偏高岭土和2%硫铝酸盐水泥后,基体的凝结时间大大缩短,早期强度显著增加,后期强度也有所增长;养护制度对基体3d和7d强度影响较大,28 d强度保持一致。  相似文献   

19.
用某些固体废弃物制备免烧砖是实现固体废弃物大宗利用的重要途径,为确定贵州某电解锰厂电解锰渣制备免烧砖的可能性,在进行了浸出毒性分析的基础上,研究了渣泥质量比、骨料掺量、水固质量比及成型压力对免烧砖抗压强度和抗折强度的影响。结果表明:随着渣泥质量比的增大,试块的抗压、抗折强度均先上升后下降,高点在渣泥质量比为5时;随着骨料掺量的增大,试块的抗压、抗折强度均先增大后减小,高点在骨料添加量为30%时;随着水固质量比的增大,试块的抗压、抗折强度先增大后减小,高点在水固质量比为0.30时;成型压力从1.0 MPa提高至2.0 MPa,试块7 d和28 d的抗压、抗折强度都显著上升,继续提高成型压力,试块7 d和28 d的抗压、抗折强度上升幅度趋缓。当渣泥质量比为5,骨料添加量为30%,水固质量比为0.3,成型压力为2 MPa时,电解锰渣免烧砖7 d的抗压、抗折强度分别达到10.63 MPa和2.21 MPa,28 d的抗压、抗折强度分别达到 14.89MPa和2.48 MPa,达到国家普通砖的强度标准。  相似文献   

20.
高掺量磷石膏耐水蒸压砖的研制   总被引:1,自引:0,他引:1  
以磷石膏为主要原料,掺入适量磷渣粉和激发剂,经过加压成型后,于200℃下,采用蒸压养护方式制成高掺量磷石膏耐水蒸压砖。该砖平均抗压强度达到12.10MPa,平均抗折强度达到3.00MPa,软化系数0.84,磷石膏利用率达到70%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号