共查询到20条相似文献,搜索用时 0 毫秒
1.
为提高智能变电站继电保护测试效率,解决数字式继电保护试验装置无法对整个测试过程中出现的故障自动进行诊断的问题,提出基于长短期记忆(Long Short-Term Memory,LSTM)网络的继电保护测试故障诊断方法.梳理了故障断面特征信息和故障类别,建立了多故障诊断模型,构建了故障诊断流程.以典型220 kV继电保护... 相似文献
2.
售电量预测对优化供电结构以及了解经济走势具有重要意义,然而,传统售电量预测方法难以从售电量及其影响因素的数据中自动抽取到较好的数据特征。为此,文中提出一种基于长短期记忆网络的售电量预测模型,该模型通过分析售电量数据及其影响因素的相关性,提出一种行业聚类方法,该方法根据不同行业的数据特征对相似的行业进行聚类,并根据聚类结果训练长短期记忆网络模型。文中模型能够学习售电量数据以及相关影响因素的数据特征和内在关联关系。实验结果表明,文中所提出的预测模型比经典的预测模型具有更高的准确度。 相似文献
3.
为了保证继电保护设备可靠性以及电力系统安全、稳定运行,建立了基于深度门控长短时记忆网络的继电保护设备寿命预测模型,针对继电保护设备特征量的时间序列特性,采用相对熵对特征量权重进行分析,得到了各个特征的赋权结果,提出了各个特征量的预测结果加权求和计算综合特征的方法,构建了设备寿命预测和评估框架。结果表明:剔除专家E4的评分后,专家E3的评分熵值最大,其值为1.42,对应的评分合理性为76%,该模型具有较好的泛化能力和逼近能力,利用模型预测得到的综合特征量能够准确评估继电保护设备未来发展状态。 相似文献
4.
太阳能光伏输出功率的精确预测对于电网的安全运行非常重要,并且可以降低光伏系统的运营费用。为了通过使用光伏系统历史的性能数据预测未来几天光伏系统的输出功率,提出了一种基于集成长短期记忆网络(Ensemble Long Short Term Memory Network,Ensemble LSTM)集成模型的方法来预测未来几天的光伏输出功率。为验证该方法的有效性,使用实测太阳能光伏数据进行实验,结果证明与单个LSTM模型对比,所提出的LSTM集成模型非常可靠,并且在输出功率预测准确性方面具有显著优势。 相似文献
5.
6.
随着新能源发电系统的快速发展,准确的光伏功率预测对提高电网消纳光电能力有重要作用。针对现有方法存在精度不足的问题,提出了一种参数更加轻量、训练更加稳定、效果更好的量子长短期记忆网络光伏功率预测模型。首先基于奇异谱分析进行数据分解,然后构建量子长短期记忆网络捕捉数据高维特征;最后,通过双重注意力机制捕捉特征维度和时间维度上的重要信息,最终在决策层输出结果。算例分析表明,与传统方法相比,所提方法可以有效提升光伏功率预测精度。真机实验验证了利用量子计算机进行光伏功率预测的可行性和有效性。随着量子计算机的发展,未来有望应用量子计算机实现海量光伏电站发电功率的快速精准预测,助力电网安全调度和可靠运行。 相似文献
7.
针对用户用能分析中电力负荷预测模型的变量冗余和收敛困难问题,提出一种基于改进长短期记忆网络(long short-term memory, LSTM)的短期负荷预测模型。首先利用FP-tree对复杂的负荷数据和气象数据进行分析,筛选负荷强关联因素,构建出训练数据集;其次建立LSTM负荷预测模型,并使用关联性分析得到的强关联因素训练负荷预测模型;最后,选取美国Homestead地区的历史数据进行仿真分析。通过对比遗传算法优化反向传递神经网络算法和鲁棒性损失函数的人工神经网络型的预测结果,预测模型的精度和稳定性满足要求,在实际中具有一定的应用价值。 相似文献
8.
大风天气容易导致高速列车发生脱轨、翻车等事故,因此对于风速的超短期预测对于高铁安全行驶具有重要的意义。提出一种基于长短期记忆(LSTM)网络的预测模型,对WindLog风速传感器采集得到的每分钟最大风速数据进行分组预处理,设置合理的步长参数,建立双层LSTM网络结构,采用北京市海淀区的风速数据进行训练,并对超前1、5、10 min的风速进行超前预测,超前1 min的预测值平均误差为0.467 m/s,正确率达100%;超前5 min的预测值平均误差为0.543 m/s,正确率达99.6%;超前10 min的预测值平均误差为0.627 m/s,正确率达98.8%。实验结果表明,该预测模型具有较好的适应性和较高的预测精度。 相似文献
9.
新冠疫情在全世界的蔓延,对国内的经济发展造成了较大的影响,供电企业电费回收压力日益增大。针对新冠疫情形势下电费回收风险分析准确性差、催费针对性不强的问题,提出了一种基于长短期记忆网络的电费风险分析方法。首先,建立供电用户分类体系,通过AP聚类,实现对供电用户的分级分类;其次,通过供电用户征信、司法裁判等信息综合对供电用户的信用进行评估;再次,通过长短期记忆网络,结合用户的历史的缴费信息和用户信用进行电费回收分析,预测可能存在的欠费风险。最后,在某地区供电公司进行实例运行,其运行结果验证了所提方法的可行性和有效性。 相似文献
10.
现代电力系统海量量测数据为电力系统暂态稳定评估提供可靠的数据基础,与此同时,数据信息挖掘成为研究焦点,暂态稳定分析中不平衡故障样本以及多特征电气量时间序列数据中所蕴藏的信息仍有待深入挖掘。为此,该文提出一种结合注意力机制的长短期记忆网络(long short term memory network with attention,LSTMA)方法,用以深入挖掘暂态稳定评估样本中所蕴藏的信息。在离线训练环节,以长短期记忆网络为基础分类器,引入Attention注意力机制引导模型学习样本中关键特征,并对损失函数进行改进,以此强化对不平衡样本的学习能力;在线应用环节,在目标域小样本条件下采用迁移学习方法更新成型的离线LSTMA模型,并对比不同迁移学习策略对模型性能影响,经过迁移学习建立的新运行点下的改进LSTMA模型评估精度有效提高,训练时间大幅减少,所得出的迁移学习策略确定方法有利于实际应用环节快速决策。研究在IEEE39节点和IEEE300节点系统上进行实验,验证了所提方法的有效性。 相似文献
12.
13.
为提高风电机组轴承寿命预测的稳定性,提出基于关联度与自检验长短期记忆网络(self-checkinglong short-term memory,Sc-LSTM)的轴承寿命预测模型。首先,采用长短期记忆网络(long short-term memory,LSTM)对风电机组轴承单一运行状态信号进行预测,分析预测误差与运行状态关系,建立风电机组轴承的寿命时长体系。其次,LSTM对轴承全寿命信号进行预测与分析,选择检验指标σ来构建检验层与Sc-LSTM,引入通过率η对预测效果进行评价。采用关联度(indexedrelation,IR)为轴承全寿命信号的状态评价指标,得到轴承的IR运行曲线。最后,利用Sc-LSTM分别对IR运行曲线、风电机组轴承信号进行预测与分析,结果表明:Sc-LSTM与IR的预测模型能有效地提高轴承寿命预测的稳定性,减少大规模预测试验的时间与成本,弥补预测误差对预测效果评价单一的问题,与其他预测方法相比效果更佳,在风电机组轴承寿命预测上具有一定参考价值。 相似文献
14.
15.
16.
换流变压器作为特/超高压直流输电系统中的关键设备,对变压器用绝缘纸剩余寿命进行有效预测,可为换流变压器的运行维护提供一定的理论依据,鉴于此,提出一种基于鲸鱼优化算法(WOA)和长短期记忆网络(LSTM)的预测方法。首先,结合绝缘纸加速机-热老化实验及试样的机械、电气性能指标和对应裂解产物的糠醛含量,由主成分分析法(PCA)对聚合度、糠醛含量和特征频率下介质损耗因数等表征绝缘纸老化的多特征量进行融合;获得综合评估指标与绝缘纸抗张强度间的量化关系,并依此将绝缘性能优良和严重劣化时对应的抗张强度分别作为正、负理想值;进一步构建贴近度构造退化指标序列并将其作为模型输入。然后,利用鲸鱼优化算法对长短期记忆网络的关键参数进行寻优。最后,构建WOA-LSTM模型对绝缘纸剩余寿命进行预测。研究表明,所提出的WOA-LSTM模型既纳入了可表征绝缘纸老化状态的多个特征量,亦可显著提高剩余寿命的预测精度,为换流变压器绝缘系统安全稳定运行提供有力保障。 相似文献
17.
随着电力系统规模不断增大,电力系统量测数据呈现快速增长趋势。然而海量数据的采集、测量、传输和存储等过程均可能出现数据缺失问题,从而威胁电网安全。针对电力系统量测缺失数据问题,文章提出了一种基于长短期记忆(long short-term memory,LSTM)网络的缺失数据恢复方法。首先,基于LSTM网络具有提取电力系统量测数据时序规律的特性,提出一种双层全连接LSTM网络模型,利用已知数据建立对缺失数据的映射。其次,为提高系统不同数据状态下的恢复精度,提出了一种随机森林状态辨识方法和考虑缺失数据位置的恢复策略。最后,利用仿真数据和实测数据验证该方法的有效性和准确性,结果表明该方法无需系统拓扑参数即可显著提高电力系统量测数据质量。 相似文献
18.
19.
光伏发电功率的预测对电网稳定以及安全地运行有重要意义,提出一种基于长短期记忆网络(long short term memory ,LSTM)数字孪生体的预测模型,通过数字孪生体模型实现光伏发电功率的精准预测。数字孪生体分为物理空间与数据空间,首先根据物理空间得到的气象孪生数据由LSTM算法获取初步的预测功率,同时更新历史气象数据库。然后在气象数据库中找到相似日,对比相似日的预测功率和实际功率,对初步的预测功率进行误差修正,得到最终光伏功率预测值。文中所提的数字孪生体实现了物理实体与数据驱动的连接,同时物理实体可进行自我学习和更新,因此相较于传统的光伏预测结果更为精确,通过仿真算例进一步证实数字孪生体预测的准确性。 相似文献
20.
用电负荷数据的波动性和周期性会影响电力负荷预测的准确性,针对此问题,文中提出了一种基于正交小波长短期记忆神经网络(orthogonal wavelet transform-long short-term memory, OWT-LSTM)的用电负荷预测方法。该方法对用电负荷序列进行正交小波分解,消除负荷数据的波动性,然后利用LSTM及其变种神经网络对正交小波分解后的各尺度负荷序列进行建模训练,通过各序列预测结果进行预测重构,获得最终的负荷预测结果。通过用户用电负荷数据集验证表明,该方法的预测性能优于其他模型,具有较高的预测精确性和稳定性。 相似文献