共查询到20条相似文献,搜索用时 73 毫秒
1.
提出了视机器人路径规划的模糊满意优化方法,该算法基于预测控制滚动优化机制,将系统优化目标和受限约束通过模糊隶属度来表示,形成多目标模糊优化问题,解决了在全局环境未知情况下的优化路径问题。仿真结果验证了该方法的有效性。 相似文献
2.
针对头脑风暴优化算法在求解机器人路径规划问题时存在初始解成功率低、运算代价大且路径不平滑等问题进行了研究,从心理学角度出发,提出了一种新型头脑风暴优化算法及其离散化方案。引入羊群效应下的教与学思想增强个体学习的方向性,并通过基于自我选择效应的步长调节机制扩大后期局部搜索比例,提升算法效率;离散处理阶段采用贪婪移动搜索法取得较优初始解,重新定义运算过程以双向平滑路径。仿真结果表明,新型头脑风暴优化算法在离散化前后均有较优的表现,在不同障碍物环境中均能规划出较优的路径。数值实验验证了所提算法的有效性,该算法在路径规划领域的应用值得进一步探索。 相似文献
3.
研究了机器人在静态障碍物环境下的路径规则问题,根据问题模型的特性设计了一种蚁群优化求解算法。该算法利用前一轮选择的路径对可行解的信息素进行相应的调整,再按转移概率选择路径,经过多次迭代搜索得出最短路径.已达到对机器人的路径优化。 相似文献
4.
5.
6.
鉴于传统的智能优化算法(intelligent optimization algorithm,IOA)不能很好解决插值平滑的机器人路径规划(robot path planning,RPP)问题,以及最近提出的海洋捕食者算法(marine predators algorithm,MPA)的优势和不足,提出了一种改进的MPA,即提升信息交流的MPA(interchange enhanced MPA,IEMPA),用于解决RPP。首先提出一种融合趋向全局最优的反向学习策略用于随机选择的一个捕食者的位置更新,以便降低陷于局部最优的概率;然后提出了一种三阶段最优引导最差策略来强化最差个体以便提升整个群体和提高搜索能力;随后,提出一种信息共享策略用于捕食前期以进一步提高算法的搜索能力;最后将IEMPA用于插值平滑的RPP中。大量的多场景RPP问题的优化实验结果表明,与MPA等优秀算法相比,IEMPA搜索能力更强、精度更高、收敛速度更快,能更好地处理RPP,可应用到在其他复杂优化问题上。 相似文献
7.
在VC 5.0的环境下实现了机器人路径规划算法的计时。该方法具有通用性,几乎可以毫无更改地应用于其他算法的计时中。其具体实现步骤如下: 相似文献
8.
巡检机器人在行驶时经常会与障碍物相撞,为避免出现此类错误,基于改进蚁群算法设计电力信息网络设备智能巡检机器人的路径规划方法。建立蚁群信息素初始化结构,获取目标区域的运动矩阵,设置智能巡检机器人的运动学约束条件,基于改进蚁群算法构造机器人路径规划估价函数。通过对计算巡检机器人的巡检完成度,设计智能巡检机器人路径规划算法。实验结果显示,该路径规划方法可以完整准确地规划无障碍物的路径以及有障碍物的路径,同时对必经路线上的障碍物进行反馈。对比不同光线条件下的路径规划效果可知,光线越充足,路径规划算法的迭代次数越少,避障准确率越高。 相似文献
9.
足球机器人路径规划算法的研究及其仿真 总被引:2,自引:0,他引:2
研究足球机器人路径规划优化问题,足球机器人由于赛场情况千变万化,系统本身存在非线性,环境也具有时变性特点,要求机器人相互协作实时性要求高。结合足球机器人系统特点,提出一种蚁群算法的足球机器人路径规划算法。把每一只蚂蚁看作是一个机器人,蚂蚁根据信息素调整自己的前进方向,通过蚂蚁间的信息交流和相互协作快速找到一条最短的机器人运行无碰撞的路径。采用算法进行测试,结果表明,用蚁群算法较好地克服了局部最优的缺陷,获得最优路径,且无碰撞现象,符合足球机器人路径规划的实时性要求。 相似文献
10.
11.
针对堆优化算法(HBO)在解决复杂问题时存在搜索能力不足和搜索效率低等缺陷,提出一种差分扰动的HBO——DDHBO。首先,提出一种随机差分扰动策略更新最优个体的位置,以解决HBO没有对其更新从而导致的搜索效率低的问题;其次,使用一种最优最差差分扰动策略更新最差个体的位置,以强化其搜索能力;然后,采用一种多层差分扰动策略更新一般个体的位置,以强化多层个体之间的信息交流,并提高搜索能力;最后,针对原更新模型在搜索初期获得有效解概率低的问题,提出一种基于维的差分扰动策略更新其他个体的位置。在大量CEC2017复杂函数上的实验结果表明,与HBO相比,DDHBO在96.67%的函数上具有更好的优化性能,更少的平均运行时间(3.445 0 s);与WRBBO(Worst opposition learning and Random-scaled differential mutation Biogeography-Based Optimization)、DEBBO(Differential Evolution and Biogeography-Based Optimization)和HGWOP(Hybrid PSO and Grey Wolf Optimizer)等先进算法相比,DDHBO也具有显著的优势。 相似文献
12.
常见的聚类方法存在对初始点敏感和易陷入局部最优的不足,为此提出了一种改进HBO的聚类方法。首先,提出一种改进的HBO,即扰动替换的HBO(disturbance and replacement HBO,DRHBO)克服其不足,即采用一种随机维度值替换策略和高斯扰动机制用于HBO中最优个体的状态更新,解决HBO搜索效率低的问题,提出一种正弦差分扰动策略,以突破当前个体仅与直接领导和同事进行交流的限制,从而增强搜索能力。将随机维度值替换和随机差分扰动策略融合,用于HBO中前期个体状态更新以避免其产生无效解。其次,提出一种DRHBO聚类方法,并运用到宫颈细胞数据集上以获得更好的聚类效果。大量、不同类别和不同样本的宫颈细胞数据集实验结果表明,与HBO及其改进算法和其他最先进算法相比,DRHBO的优化性能更好、稳定性更强且效率更高。DRHBO聚类方法更适应于宫颈细胞数据集。 相似文献
13.
模糊优化算法及其在视觉机器人路径规划中的应用 总被引:4,自引:0,他引:4
提出了视觉机器人路径规划的模糊满意优化方法.该算法基于预测控制滚动优化机制,将系统优化目标和受限约束通过模糊隶属度来表示,形成多目标模糊优化问题,解决了在全局环境未知情况下的优化路径问题,仿真结果验证了该方法的有效性. 相似文献
14.
目前,虽然有多种智能计算方法用于移动机器人路径规划问题,但在复杂环境下,多数智能计算方法表现出效率低下,结果较差的问题。提出一种结合基于有效顶点的栅格编码法和改进的生物地理学优化算法的移动机器人路径规划方法,以解决该类问题。结合已知的环境信息,从精英策略、降维机制和基于惯性算子的迁移操作3方面改进了生物地理学优化算法。改进算法用于机器人移动路径,与人工蜂群算法、粒子群算法和人工鱼群算法等智能算法进行比较,实验的结果证实改进算法能够更有效地解决复杂环境下机器人路径规划问题。 相似文献
15.
移动机器人是目前科学技术发展最活跃的领域之一,在工业、农业、医疗等行业广泛应用,还在城市安全、国防和空间探测领域得到更广的应用。要实现机器人在未知环境下自主作业,具备实时、自主、识别高风险区域和风险管理的能力,路径规划是一个重要环节,规划水平的高低,在一定程度上标志着机器人的智能水平,因此研究机器人路径规划对提高机器人的智能化水平、加快工程化应用具有重要的意义。文章重点分别从全局路径规划和局部路径规划角度对机器人路径规划的研究方法进行了分析与总结,同时分析研究了基于仿生学的智能算法的遗传算法、蚁群算法、粒子群算法,最后展望了移动机器人的未来发展趋势。 相似文献
16.
17.
移动机器人路径规划技术是机器人研究领域中的核心技术之一。通过对全局路径规划和局部路径规划中各种方法的分析,指出了各种方法的优点和不足以及改进的办法,并对移动机器人路径规划技术的发展趋势进行了展望。 相似文献
18.
针对快速探索随机树(RRT)算法进行路径规划时随机性大且未考虑移动代价的问题,提出了任意时间快速探索随机树算法。生成一组快速探索随机树,之后每个树都重新使用上个树的信息来不断改进树的延伸。为进一步优化算法,使用节点缓存来生成一个引力函数来减少移动代价。最终的算法能够快速地生成初始路径,在规划时间内不断地改进路径且通过使用阈值来确保后面路径都比上次的移动代价更小。双足机器人仿真实验中,改进后的算法与初始的算法相比,搜索的节点数由883减少到704,效率提高了近25%。实验结果表明了改进算法的有效性。 相似文献
19.
20.
以Dijkstra算法求解移动机器人路径规划(mobile robot path planning,MRPP)问题已得到广泛的应用,但在复杂工况下无法保证求解的正确性和全局最优性.而基于蚁群算法的移动机器人路径规划模型,在一定条件下能可靠地获得全局最优解,但存在求解时间过长的问题.因此,提出一种结合Dijkstra算法和蚁群算法模型两者优势求解MRPP问题的融合优化方法,以实现在短时间内获得全局最优解的目标.首先,应用Dijkstra快速算法在机器人工作环境中粗略寻迹得到最短路径次优解,然后,在次优解路径附近进行工作环境的精确划分;最后,利用蚁群算法在次优解附近精确寻迹,使最终的寻迹结果无限逼近最短路径.仿真结果表明,该融合优化方法既克服了经典蚁群算法求解时间过长的缺点,又能无限逼近全局最优解,寻迹时间较蚁群算法可缩短90%以上. 相似文献