共查询到18条相似文献,搜索用时 69 毫秒
1.
针对现阶段可用睡眠脑电数据皆为类不平衡小数据集,深度学习模型的直接迁移应用所取得的分期效果较差的问题,分别从数据集重构和模型训练优化两方面入手,提出可用于少量类不均衡原始睡眠脑电数据集的深度自动睡眠分期模型。首先,从减少决策域的角度对修改的生成少数类过采样技术(MSMOTE)进行改进,并将其用于数据集中少数类的生成;然后,用重构后的数据集对模型作预激活处理。15折交叉验证得出总体精度和宏F1值分别为86.73%和81.70%。应用改进后的MSMOTE重构的数据集对模型作预激活,可使最小类的F1值由45.16%增至53.64%。实验表明,模型可实现对少量原始睡眠脑电数据的端到端学习,总体分类效果优于近年高水平模型,适用于配备远程服务器的分体式便携睡眠监测设备。 相似文献
2.
计算机视觉是计算机领域研究的热门方向,而三维重建在计算机视觉方面具有很高的研究价值.近年来,随着深度学习、人工智能不断的发展,基于深度学习的单视图三维重建工作受到大量学者的关注.介绍了基于深度学习的单视图三维重建的三种常用方法、三维重建工作常用数据集和其具体的应用领域,并对基于深度学习的单视图三维重建进行了小结与展望. 相似文献
3.
为实现高效的自动睡眠分期,提出一种基于周期分割的时域信号处理方法,采用合并增减序列方法对三个通道多导睡眠图记录(2路脑电,1路眼电)进行周期分割,根据信号波形的周期标记睡眠各期的特征波形,提取特征波形在每一帧数据的时长占比与平均幅值作为特征。双向长短时记忆网络(Bi-directional Long Short-Term Memory,Bi-LSTM)作为分类器,解决传统机器学习方法无法利用睡眠数据时间上下文信息的缺点。对42?699个样本使用交叉验证方法得到了84.8%的平均准确率,实验结果表明合并增减序列方法可以降低脑电信号分析的复杂度,是一种有效的时域信号处理方法,双向长短时记忆网络可以有效提高睡眠分期准确率,具有良好的应用前景。 相似文献
4.
针对睡眠多导图中各模态信息在睡眠各阶段存在差异性,而导致特征利用不充分的问题,本文提出了一种基于通道注意力机制和多模态门控机制的睡眠分期模型。首先利用残差收缩网络设计各模态特征提取网络用于提取各模态特征,并在通道维度上进行拼接融合,利用通道注意力机制进一步对融合特征进行重标定得到睡眠多导图的时不变特征;之后提出了一种基于自适应门控机制的多模态门控模块,对各模态特征及时不变特征按照重要程度进行加权融合,实现特征融合;最后利用双向长短时记忆网络提取睡眠多导图的时序特征。实验结果表明,本文提出的睡眠分期模型在欧洲数据格式睡眠数据集(sleep-European data format, sleep-EDF)上准确率为87.6%,$ {M_{{F_1}}} $为82.0%,取得了目前最好的分期效果。 相似文献
5.
6.
为解决传统睡眠分期特征需手工设计且忽略睡眠状态变换的前后关联性和规律性的问题,设计一种结合状态转移规则的深度睡眠分期模型。通过添加残差网络加深卷积神经网络层数,自动提取信号的高维特征,对睡眠状态进行分类,结合睡眠状态变换规律,设计状态转移规则纠正分类结果。实验结果表明,该模型有效可行,为睡眠相关疾病的诊断和治疗提供了可行的辅助判读方法。 相似文献
7.
8.
睡眠障碍严重影响人类健康和生活,将睡眠阶段准确分类是检测和治疗睡眠障碍的关键.近年来,基于深度学习的方法超越了传统机器学习方法及人类专家.然而,深度学习的内部结构复杂,需要对计算机及医学领域熟悉的专家进行设计.旨在分析现有基于深度学习的睡眠分期模型中的关系归纳偏置,探索睡眠分期模型设计基本原则.对平移不变性、时间不变性... 相似文献
9.
《微型机与应用》2017,(17):88-91
睡眠分期是睡眠数据分析的基础,用自动标定方法来替代人工标定方法可以提高效率,结果也更为客观。不管是人工手动标定还是自动标定都是基于多导睡眠图(Polysomnography,PSG)。采用长短时记忆模型(LSTM-RNN)及长短时记忆模型与卷积神经网络(CNN)相结合的模型(CNN-LSTM)对三个通道信号(EEG、EOG、EMG)的组合进行自动睡眠分期研究。通过对9个受试数据进行分析,LSTM-RNN和CNN-LSTM分别达到了81.9%和83.1%的分类准确率。相对于LSTM-RNN模型,结合卷积神经网络的CNN-LSTM模型获得的分期准确率更高,平均准确率提高了1.2%。 相似文献
10.
11.
针对单通道脑电信号睡眠自动分期效率和准确率问题,提出采用三尺度并行卷积神经网络提取睡眠信号特征和双向门控循环单元学习睡眠阶段之间内部时间关系的3CNN-BiGRU睡眠自动分期模型。首先对原始单通道脑电信号进行带通滤波处理,并采用合成少数类过采样技术进行类平衡,然后送入搭建的模型中进行训练和验证实验,其中采用预训练和微调训练对模型进行优化,采用10次和20次交叉验证提高训练可靠性。不同数据集下的不同模型对比实验结果表明,3CNN-BiGRU模型取得了更高的训练效率和更好的分期准确率。 相似文献
12.
基于手工标记或传统机器学习方法实现睡眠分期过程复杂且效率低下,深度神经网络因其强大的提取复杂特征的能力改善了睡眠分期结果,但仍存在忽略片段内部信息相关性的问题。针对此问题,本文提出一种基于自注意力机制和单导联心电信号的自动睡眠分期算法,利用卷积模块、双向门控循环单元及自注意力机制实现特征自动提取与分类。在开源睡眠心脏健康研究数据库(SHHS1、SHHS2)、动脉粥样硬化的多民族研究数据库(MESA)和美国麻省理工的多导睡眠数据库(MITBPD)中分别选取1000、1000、1000和16名受试者的单导联心电信号数据进行训练和测试,得到模型睡眠四分类(觉醒、快速眼动期、浅睡眠和深睡眠)结果,分类准确率分别达到75.77%(kappa=0.63)、81.01%(kappa=066)、82.79%(kappa=0.71)和76.22%(kappa=0.58),优于基于传统机器学习算法的睡眠分期结果,验证了提出模型的有效性。 相似文献
13.
基于自编码算法的深度学习综述 总被引:2,自引:0,他引:2
深度学习是机器学习的一个分支,开创了神经网络发展的新纪元.自编码算法作为深度学习结构的重要组成部分,在无监督学习及非线性特征提取过程中起到了至关重要的作用.首先介绍自编码算法的基本概念及原理,然后介绍基于自编码算法的改进算法,最后列举了自编码算法在若干领域应用的知名案例和发展趋势. 相似文献
14.
单视图三维重建在计算机视觉领域中是一个具有挑战性的问题.为了提升现有三维重建算法重建后三维模型的精度,本文除了提取图像全局特征之外还提取图像局部特征,结合全局特征和局部特征并选取SDF (signed distance function)作为重建后的三维物体表达方式,不仅提高了模型的精度,生成了更高质量的3D形状,还增强了模型的泛化能力,使得深度模型可以以较高质量重建出其他物体种类.实验结果表明,本文提出的深度网络结构和3D形状表示方法与当今最先进的重建算法相比,无论在重建后三维模型的效果还是新型物体的泛化中都有更好的表现. 相似文献
15.
当代社会睡眠问题日益突出,及时检测评估睡眠质量有助于诊断睡眠疾病.针对目前市面上睡眠监测类产品发展参差不齐的现状,本文搭建了一个基于双通道脑电信号的在线实时睡眠分期系统,利用第三方接口脑环获取脑电数据,结合CNN-BiLSTM神经网络模型,在PC电脑端实现了在线的实时睡眠分期与音乐调控功能.系统使用基于卷积神经网络CNN和双向长短时记忆神经网络BiLSTM相结合的算法模型对脑电信号进行自动特征提取,CNN能够提取高阶特征, BiLSTM可以捕捉睡眠数据前后的依赖性和关联性,睡眠分期准确率更高.实验结果表明,本文算法模型在Sleep-EDF公共数据集上的四分类任务中取得了92.33%的分期准确率,其Kappa系数为0.84,本系统的实时睡眠分期功能在自采集睡眠数据分期实验中取得79.17%的分期准确率,其Kappa系数为0.70.相比其他睡眠监测类产品,本系统睡眠分期准确率更高,应用场景更多样,实时性和可靠性强,并且可以根据分期结果对用户进行相应的音乐调控,改善用户睡眠质量. 相似文献
16.
针对肝纤维化临床诊断方法具有有创性和传统机器学习方法特征提取的不完全性的缺陷,本文采用深度迁移学习方法利用预训练的ResNet-18和VGGNet-11模型用于肝纤维化分期诊断.使用南方医科大学提供的大鼠肝纤维化核磁共振影像数据集进行不同程度的迁移训练.将两种模型在通过4种不同参数采集的核磁共振影像数据集上,分别使用6种网络迁移配置训练.实验结果表明,使用T1RHO-FA参数采集的核磁共振影像和采用VGGNet-11模型更能提高肝纤维化分期诊断的准确率.同时相对于ResNet-18模型,深度模型迁移学习方法能稳定提升VGGNet-11模型进行肝纤维化分期诊断的准确率和训练速度. 相似文献
17.
18.
Anwer Mustafa Hilal Amal Al-Rasheed Jaber S. Alzahrani Majdy M. Eltahir Mesfer Al Duhayyim Nermin M. Salem Ishfaq Yaseen Abdelwahed Motwakel 《计算机系统科学与工程》2023,45(2):1249-1263
Sleep plays a vital role in optimum working of the brain and the body. Numerous people suffer from sleep-oriented illnesses like apnea, insomnia, etc. Sleep stage classification is a primary process in the quantitative examination of polysomnographic recording. Sleep stage scoring is mainly based on experts’ knowledge which is laborious and time consuming. Hence, it can be essential to design automated sleep stage classification model using machine learning (ML) and deep learning (DL) approaches. In this view, this study focuses on the design of Competitive Multi-verse Optimization with Deep Learning Based Sleep Stage Classification (CMVODL-SSC) model using Electroencephalogram (EEG) signals. The proposed CMVODL-SSC model intends to effectively categorize different sleep stages on EEG signals. Primarily, data pre-processing is performed to convert the actual data into useful format. Besides, a cascaded long short term memory (CLSTM) model is employed to perform classification process. At last, the CMVO algorithm is utilized for optimally tuning the hyperparameters involved in the CLSTM model. In order to report the enhancements of the CMVODL-SSC model, a wide range of simulations was carried out and the results ensured the better performance of the CMVODL-SSC model with average accuracy of 96.90%. 相似文献