共查询到20条相似文献,搜索用时 62 毫秒
1.
多标签图像分类是多标签数据分类问题中的研究热点.针对目前多标签图像分类方法只学习图像的视觉表示特征,忽略了图像标签之间的相关信息以及标签语义与图像特征的对应关系等问题,提出了一种基于多头图注意力网络与图模型的多标签图像分类模型(ML-M-GAT).该模型利用标签共现关系与标签属性信息构建图模型,使用多头注意力机制学习标签的注意力权重,并利用标签权重将标签语义特征与图像特征进行融合,从而将标签相关性与标签语义信息融入到多标签图像分类模型中.为验证本文所提模型的有效性,在公开数据集VOC-2007和COCO-2014上进行实验,实验结果表明, ML-M-GAT模型在两个数据集上的平均均值精度(mAP)分别为94%和82.2%,均优于CNN-RNN、ResNet101、MLIR、MIC-FLC模型,比ResNet101模型分别提高了4.2%和3.9%.因此,本文所提的ML-M-GAT模型能够利用图像标签信息提高多标签图像分类性能. 相似文献
2.
针对高分辨率遥感图像中存在背景复杂、目标大小不一、类间具有相似性的问题,提出一种用于遥感图像语义分割的多特征注意力融合网络(Multi-feature Attention Fusion, MAFNet)。MAFNet基于编码和解码结构,在编码阶段,采用空间金字塔池化获取多尺度的上下文信息,同时融合特征通道之间的关联信息,提高特征图的语义表征能力;在解码阶段,基于注意力机制将高层特征与低层特征自适应地融合,逐级恢复目标的细节特征。在公开的数据集Potsdam和Vaihingen上设计了对比实验,PA值分别达到了89.6%和89.1%,验证了该方法的有效性。 相似文献
3.
视觉问答是一个具有挑战性的问题,需要结合计算机视觉和自然语言处理的概念。大多数现有的方法使用双流方式,先分别计算图像和问题特征,然后再采取不同的技术和策略进行融合。目前,尚缺乏能够直接捕获问题语义和图像空间关系的更高层次的表示方法。提出一种基于图结构的级联注意力学习模型,该模型结合了图学习模块(学习输入图像问题的特定图表示)、图卷积层和级联注意力层,目的是捕捉不同候选框区域图像的空间信息,以及其与问题之间的更高层次的关系。在大规模数据集VQA v2.0上进行了实验,结果表明,跟主流算法相比较,是/否、计数和其他类型问题的回答准确率均有明显提升,总体准确率达到了68.34%,从而验证了提出模型的有效性。 相似文献
4.
针对中文医疗自动问答任务,为了捕捉问答句中重要的句法信息和语义信息,提出引入图卷积神经网络捕捉句法信息,并添加多注意力池化模块实现问答句的语序特征和句法特征联合学习的方法。在BERT模型学习问答句的高阶语义特征基础上,利用双向门控循环单元描述句子的全局语义特征,以及引入图卷积神经网络编码句子的语法结构信息,以与双向门控循环单元所获取的序列特征呈现互补关系;通过多注意力池化模块对问答对的不同语义空间上的编码向量进行两两交互,并着重突出问答对的共现特征;通过衡量问答对的匹配分数,找出最佳答案。实验结果表明,在cMedQA v1.0和cMedQA v2.0数据集上,相比于主流的深度学习方法,所提方法的ACC@1有所提高。实验证明引入图卷积神经网络和多注意力池化模块的集成算法能有效提升自动问答模型的性能。 相似文献
5.
目的 图像变形算法中特征基元提取和匹配方式大部分都是采用人机交互的方式进行,并且在遮挡区域变形时出现较多的鬼影和模糊现象,使得针对同一场景图像变形实现繁琐且效果不佳,针对这些问题提出一种基于多特征融合的自动图像变形算法。方法 该算法提取多种图像特征信息(如Surf特征算子、Harris算子、Canny算子等)并进行多特征融合匹配,得到一个分布适当且对应关系正确的三角网格,再结合图像变形,实现自动图像插值。结果 实验结果显示,自动的提取特征基元有效地减少了人工操作,而多特征融合匹配有效地抑制了图像变形时边缘或遮挡区域鬼影的产生。结论 提出的融合匹配方法,将不同的特征信息有效地融合匹配从而改善了图像变形算法。通过对多组实验结果进行问卷调查,91%的参与者认为该算法有效地改进图像变形结果。 相似文献
6.
近年来,基于自注意力机制的编码器-解码器框架已经成为主流的图像描述模型。然而,编码器中的自注意力只建模低尺度特征的视觉关系,忽略了高尺度视觉特征中的一些有效信息,从而影响了生成描述的质量。针对该问题,文中提出了一种基于跨尺度特征融合自注意力的图像描述方法。该方法在进行自注意力运算时,将低尺度和高尺度的视觉特征进行跨尺度融合,从视觉角度上提高自注意力关注的范围,增加有效视觉信息,减少噪声,从而学习到更准确的视觉语义关系。在MS COCO数据集上的实验结果表明,所提方法能够更精确地捕获跨尺度视觉特征间的关系,生成更准确的描述。特别地,该方法是一种通用的方法,通过与其他基于自注意力的图像描述方法相结合,能进一步提高模型性能。 相似文献
7.
多媒体技术的发展导致数字图像迅速增长,如何根据语义特征高效检索出满足用户要求的图像,已成为当前各行业迫切需要解决的问题。为此提出一种基于颜色、纹理和形状三种语义特征的图像检索方法,建立了颜色和纹理特征的语义描述,使用BP神经网络实现了低层视觉特征到高层语义特征的映射。选取Corel图像库作为测试图像库,实验通过与基于颜色语义特征的检索方法相比较,取得了良好的实验效果。 相似文献
8.
9.
近年来,随着深度学习技术的发展,基于编解码的图像分割方法在病理图像自动化分析上的研究与应用也逐渐广泛,但由于胃癌病灶复杂多变、尺度变化大,加上数字化染色图像时易导致的边界模糊,目前仅从单一尺度设计的分割算法往往无法获得更精准的病灶边界。为优化胃癌病灶图像分割准确度,基于编解码网络结构,提出一种基于多尺度注意力融合网络的胃癌病灶图像分割算法。编码结构以EfficientNet作为特征提取器,在解码器中通过对多路径不同层级的特征进行提取和融合,实现了网络的深监督,在输出时采用空间和通道注意力对多尺度的特征图进行注意力筛选,同时在训练过程中应用综合损失函数来优化模型。实验结果表明,该方法在SEED数据集上Dice系数得分达到0.806 9,相比FCN和UNet系列网络一定程度上实现了更精细化的胃癌病灶分割。 相似文献
10.
在细粒度图像分类任务中,巨大的类内方差决定了该任务的分类依赖于粗粒度和细粒度信息.最近的工作主要关注于如何定位不同粒度的辨别性局部来解决这个问题.然而,在如何选择具有辨别性的粒度以及融合多粒度特征方面,现有的工作还缺乏一定研究.因此,本文提出了一个融合多粒度特征的细粒度图像分类网络,首先通过一个局部错位模块选择细粒度图像中的不同粒度,然后引入注意力机制定位它们并提取其多粒度特征,并且通过迭代学习的方式提取多粒度间的互补信息,最后采用可变形卷积融合这些多粒度特征,从而实现细粒度图像分类.本文所提出的方法在CUB-200-2011、FGVC-Aircraft和Stanford Cars三个数据集上准确率分别达到88.6%、93.6%和94.8%,这表明本文的方法能够获得优秀的分类性能. 相似文献
11.
视觉问答(visual question answering,VQA)是深度学习领域的一个新挑战,需要模型同时根据问题的语义和图片的内容进行推理并给出正确答案。针对视觉问答图片输入的多样性,设计了一种由两层注意力机制堆叠组成的层次注意力机制,帮助模型定位图片中与问题相关的信息,其中第一层注意力机制使用目标检测网络提取图片中物体的特征,第二层注意力机制引入问题特征。同时改进了现有的特征融合方式,消除对输入特征尺寸的限制。VQA数据集的测试结果显示,层次注意力机制使计数类问题的回答准确率提升了4%~5%,其他类型的问题回答准确率也有小幅提升。 相似文献
12.
目的 现有大多数视觉问答模型均采用自上而下的视觉注意力机制,对图像内容无加权统一处理,无法更好地表征图像信息,且因为缺乏长期记忆模块,无法对信息进行长时间记忆存储,在推理答案过程中会造成有效信息丢失,从而预测出错误答案。为此,提出一种结合自底向上注意力机制和记忆网络的视觉问答模型,通过增强对图像内容的表示和记忆,提高视觉问答的准确率。方法 预训练一个目标检测模型提取图像中的目标和显著性区域作为图像特征,联合问题表示输入到记忆网络,记忆网络根据问题检索输入图像特征中的有用信息,并结合输入图像信息和问题表示进行多次迭代、更新,以生成最终的信息表示,最后融合记忆网络记忆的最终信息和问题表示,推测出正确答案。结果 在公开的大规模数据集VQA (visual question answering)v2.0上与现有主流算法进行比较实验和消融实验,结果表明,提出的模型在视觉问答任务中的准确率有显著提升,总体准确率为64.0%。与MCB(multimodal compact bilinear)算法相比,总体准确率提升了1.7%;与性能较好的VQA machine算法相比,总体准确率提升了1%,其中回答是/否、计数和其他类型问题的准确率分别提升了1.1%、3.4%和0.6%。整体性能优于其他对比算法,验证了提出算法的有效性。结论 本文提出的结合自底向上注意力机制和记忆网络的视觉问答模型,更符合人类的视觉注意力机制,并且在推理答案的过程中减少了信息丢失,有效提升了视觉问答的准确率。 相似文献
13.
针对当前主流视觉问答(visual question answering,VQA)任务使用区域特征作为图像表示而面临的训练复杂度高、推理速度慢等问题,提出一种基于复合视觉语言的卷积网络(composite visionlinguistic convnet,CVlCN)来对视觉问答任务中的图像进行表征.该方法将图像特征和问题语义通过复合学习表示成复合图文特征,然后从空间和通道上计算复合图文特征的注意力分布,以选择性地保留与问题语义相关的视觉信息.在VQA-v2数据集上的测试结果表明,该方法在视觉问答任务上的准确率有明显的提升,整体准确率达到64.4%.模型的计算复杂度较低且推理速度更快. 相似文献
14.
15.
VQA attracts lots of researchers in recent years. It could be potentially applied to the remote consultation of COVID-19. Attention mechanisms provide an effective way of utilizing visual and question information selectively in visual question and answering (VQA). The attention methods of existing VQA models generally focus on spatial dimension. In other words, the attention is modeled as spatial probabilities that re-weights the image region or word token features. However, feature-wise attention cannot be ignored, as image and question representations are organized in both spatial and feature-wise modes. Taking the question “What is the color of the woman’s hair” for example, identifying the hair color attribute feature is as important as focusing on the hair region. In this paper, we propose a novel neural network module named “multimodal feature-wise attention module” (MulFA) to model the feature-wise attention. Extensive experiments show that MulFA is capable of filtering representations for feature refinement and leads to improved performance. By introducing MulFA modules, we construct an effective union feature-wise and spatial co-attention network (UFSCAN) model for VQA. Our evaluation on two large-scale VQA datasets, VQA 1.0 and VQA 2.0, shows that UFSCAN achieves performance competitive with state-of-the-art models. 相似文献
16.
目的 图表问答是计算机视觉多模态学习的一项重要研究任务,传统关系网络(relation network,RN)模型简单的两两配对方法可以包含所有像素之间的关系,因此取得了不错的结果,但此方法不仅包含冗余信息,而且平方式增长的关系配对的特征数量会给后续的推理网络在计算量和参数量上带来很大的负担。针对这个问题,提出了一种基于融合语义特征提取的引导性权重驱动的重定位关系网络模型来改善不足。方法 首先通过融合场景任务的低级和高级图像特征来提取更丰富的统计图语义信息,同时提出了一种基于注意力机制的文本编码器,实现融合语义的特征提取,然后对引导性权重进行排序进一步重构图像的位置,从而构建了重定位的关系网络模型。结果 在2个数据集上进行实验比较,在FigureQA(an annotated figure dataset for visual reasoning)数据集中,相较于IMG+QUES(image+questions)、RN和ARN(appearance and relation networks),本文方法的整体准确率分别提升了26.4%,8.1%,0.46%,在单一验证集上,相较于LEA... 相似文献
17.
基于语义扩展的短问题分类 总被引:1,自引:0,他引:1
问题分类是问答系统任务之一。特别是语音交互方式中,用户的提问较短,具有口语化特征,利用传统文本分类方法对问题进行分类的效果不佳。为此提出一种基于语义扩展的短问题分类方法,该方法使用搜索引擎对问题进行知识扩展;然后,使用主题模型进行特征词选择;最后,利用词语相似度计算获取问题的类别。实验结果表明,所提方法在1365条真实问题集上平均F-measure值达到0.713,其值高于支持向量机(SVM)、K近邻(KNN)算法和最大熵方法。因此,该方法在问答系统中可以帮助系统提升问题分类的准确率。 相似文献
18.
为了解决受限域问答系统中答案抽取的问题,提出了一种基于浅层语义分析的问答系统模型。该模型以自然语言为接口,利用医院信息本体,采用浅层语义分析技术,由语义块定义规则和语义块判定规则,首先生成问句向量,然后利用SPARQL查询技术,在本体中进行查询,从而得到答案。实验表明该方法可行,对自动问答系统的设计具有借鉴意义和深入研究的价值。 相似文献
19.
20.
针对现有基于注意力机制的多模态学习,对文字上下文之间的自我联系和图像目标区域的空间位置关系进行了深入研究。在分析现有注意力网络的基础上,提出使用自注意力模块(self-attention,SA)和空间推理注意力模块(spatial reasoning attention,SRA)对文本信息和图像目标进行映射,最终得到融合特征输出。相较于其他注意力机制,SA和SRA可以更好地将文本信息匹配图像目标区域。模型在VQAv2数据集上进行训练和验证,并在VQAv2数据集上达到了64.01%的准确率。 相似文献