首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A number of type-II classic cadherin cell-cell adhesion molecules are expressed in the brain. To investigate their roles in brain morphogenesis, we selected three type-II cadherins, cadherin-6 (cad6), -8 (cad8) and -11 (cad11), and mapped their expressions in the forebrain and other restricted regions of postnatal mouse brains. In the cerebral cortex, each cortical area previously defined was delineated by a specific combinatorial expression of these cadherins. The thalamus and other subcortical regions of the forebrain were also subdivided by differential expression of the three cadherins; e.g., the medial geniculate body expressed only cad6; the ventral posterior thalamic nucleus, cad6/cad11; and the anteroventral thalamic nucleus, cad6/cad8. Likewise, in the olivocerebellar system, each subdivision of the inferior olive expressed a unique set of the three cadherins, and the cerebellar cortex had parasagittal stripes of cad8/cad11 expressions. Close analysis of these cadherin expression patterns revealed that they are correlated with neuronal connection patterns. Examples of these correlations include that cad6 delineates the auditory projection system, cad6/cad8/ cad11 are expressed by part of the Papez circuit, and cad6/cad8 are expressed by subdivisions of the olivo-nuclear circuit. Together with the recent finding that the cadherin adhesion system is localized in synaptic junctions, our findings support the notion that cadherin-mediated cell-cell adhesion plays a role in selective interneuronal connections during neural network formation.  相似文献   

2.
Cadherins form a large family of homophilic cell adhesion molecules that are involved in numerous aspects of neural development. The best-studied neural cadherin, N-cadherin, is concentrated at synapses made by retinal axons in the chick optic tectum and is required for the arborization of retinal axons in their target (retinorecipient) laminae. By analogy, other cadherins might mediate arborization or synaptogenesis in other tectal laminae. Here we consider which cadherins are expressed in tectum, which cells express them, and how their expression is regulated. First, using N-cadherin as a model, we show that synaptic input regulates both cadherin gene expression and the subcellular distribution of cadherin protein. Second, we demonstrate that N-, R-, and T-cadherin are each expressed in distinct laminar patterns during retinotectal synaptogenesis and that N- and R- are enriched in nonoverlapping synaptic subsets. Third, we show that over 20 cadherin superfamily genes are expressed in the tectum during the time that synapses are forming and that many of them are expressed in restricted groups of cells. Finally, we report that both beta-catenin and gamma-catenin (plakoglobin), cytoplasmic proteins required for cadherin signaling, are enriched at synapses and associated with N-cadherin. However, beta- and gamma-catenins are differentially distributed and regulated, and form mutually exclusive complexes. This result suggests that cadherin-based specificity involves multiple cadherin-dependent signaling pathways as well as multiple cadherins.  相似文献   

3.
Cadherins are homophilic adhesion molecules that, together with their intracellular binding partners the catenins, mediate adhesion and signaling at a variety of intercellular junctions. This study shows that neural (N)-cadherin and beta-catenin, an intracellular binding partner for the classic cadherins, are present in axons and dendrites before synapse formation and then cluster at developing synapses between hippocampal neurons. N-cadherin is expressed initially at all synaptic sites but rapidly becomes restricted to a subpopulation of excitatory synaptic sites. Sites of GABAergic, inhibitory synapses in mature cultures therefore lack N-cadherin but are associated with clusters of beta-catenin, implying that they contain a different classic cadherin. These findings indicate that N-cadherin adhesion may stabilize early synapses that can then be remodeled to express a different cadherin and that cadherins systematically differentiate between functionally (excitatory and inhibitory) and spatially distinct synaptic sites on single neurons. These results suggest that differential cadherin expression may orchestrate the point-to-point specificity displayed by developing synapses.  相似文献   

4.
5.
BACKGROUND: The assembly of complex tissues during embryonic development is thought to depend on differential cell adhesion, mediated in part by the cadherin family of cell-adhesion molecules. The protocadherins are a new subfamily of cadherins; their extracellular domains comprise cadherin-like repeats but their intracellular domains differ significantly from those of classical cadherins. Little is known about the ability of protocadherins to mediate the adhesion of embryonic cells, or whether they play a role in the formation of embryonic tissues. RESULTS: We report the isolation and characterization of a novel protocadherin, termed NF-protocadherin (NFPC), that is expressed in Xenopus embryos. NFPC showed a striking pattern of expression in early embryos, displaying predominant expression within the deep, sensorial layer of the embryonic ectoderm and in a restricted group of cells in the neural folds, but was largely absent from the neural plate and surrounding placodal regions. Ectopic expression in embryos demonstrated that NFPC could mediate cell adhesion within the embryonic ectoderm. In addition, expression of a dominant-negative form of NFPC disrupted the integrity of embryonic ectoderm, causing cells in the deep layer to dissociate, though leaving the outer layer relatively intact. CONCLUSIONS: Our results indicate that NFPC is required as a cell-adhesion molecule during embryonic development, and its function is distinct from that of classical cadherins in governing the formation of a two-layer ectoderm. These results suggest that NFPC, and protocadherins in general, are involved in novel cell-cell adhesion mechanisms that play important roles in tissue histogenesis.  相似文献   

6.
The expression of two calcium-dependent adhesion molecules of the cadherin superfamily (cadherin-6B and cadherin-7) was mapped in the embryonic neural retina and retinofugal pathways of the chicken embryo and compared with the expression of R-cadherin, N-cadherin, and B-cadherin, studied previously. Whereas B-cadherin is only found in Miller glia, the other four cadherins are each expressed by specific subpopulations of retinal neurons. For example, different (but partly overlapping) populations of bipolar cells express R-cadherin, cadherin-6B, and cadherin-7. Cadherin-6B and cadherin-7 are also expressed by subsets of amacrine cells. In the inner plexiform layer, cadherin-6B and cadherin-7 immunoreactivities are restricted to specific sublaminae associated with synapsin-I-positive nerve terminals. In addition, cadherin-6B and cadherin-7 are expressed by a subset of ganglion cells that project to several retinorecipient nuclei forming part of the accessory optic system (e.g., nucleus of the basal optic root and external pretectal nucleus). Together with their connecting fiber tracts, these nuclei also express cadherin-6B and cadherin-7 in their neurons and neuropile. The expression patterns of the two cadherins overlap but show distinct differences. Some other visual nuclei express cadherin-7 but not cadherin-6B. The expression patterns differ from those previously described for N- and R-cadherin. Together, these results demonstrate that cadherins could provide a system of adhesive cues that specify developing retinal circuits and other functional connections and subsystems in the embryonic chicken visual system.  相似文献   

7.
In the developing chicken cerebellar cortex, three cadherins (Cad6B, Cad7, and R-cadherin) are expressed in distinct parasagittal segments that are separated from each other by ribbons of migrating interneurons and granule cells which express R-cadherin and Cad7, respectively. The segment/ribbon pattern is respected by the expression of other types of molecules, such as engrailed-2 and SC1/BEN/DM-GRASP. The cadherin-defined segments contain young Purkinje cells which are connected to underlying nuclear zones expressing the same cadherin, thereby forming parasagittal cortico-nuclear zones of topographically organized connections. In addition, R-cadherin-positive mossy fiber terminals display a periodic pattern in the internal granular layer. In this layer, Cad7 and R-cadherin are associated with synaptic complexes. These results suggest that cadherins play a pivotal role in the formation of functional cerebellar architecture by providing a three-dimensional scaffold of adhesive information.  相似文献   

8.
Cadherins are calcium-dependent cell adhesion molecules that play fundamental roles in embryonic development, tissue morphogenesis, and cancer. A prerequisite for their function is association with the actin cytoskeleton via the catenins. Tyrosine phosphorylation of beta-catenin, which correlates with a reduction in cadherin-dependent cell adhesion, may provide cells with a mechanism to regulate cadherin activity. Here we report that beta-catenin immune precipitates from PC12 cells contain tyrosine phosphatase activity which dephosphorylates beta-catenin in vitro. In addition, we show that a member of the leukocyte antigen-related protein (LAR)-related transmembrane tyrosine phosphatase family (LAR-PTP) associates with the cadherin-catenin complex. This association required the amino-terminal domain of beta-catenin but does not require the armadillo repeats, which mediate association with cadherins. The interaction also is detected in PC9 cells, which lack alpha-catenin. Thus, the association is not mediated by alpha-catenin or by cadherins. Interestingly, LAR-PTPs are phosphorylated on tyrosine in a TrkA-dependent manner, and their association with the cadherin-catenin complex is reduced in cells treated with NGF. We propose that changes in tyrosine phosphorylation of beta-catenin mediated by TrkA and LAR-PTPs control cadherin adhesive function during processes such as neurite outgrowth.  相似文献   

9.
Neurite outgrowth is a central aspect of the ontogenetic formation of neural networks and is regulated by distinct groups of cell surface molecules. One protein involved in neurite elongation and fasciculation is the neural Ig superfamily member F11/contactin. We have shown previously that F11 promotes neurite extension of chick tectal neurons by interaction with the tectal receptor NrCAM, a member of the L1 subgroup of the Ig superfamily. By contrast, it does not induce outgrowth of retinal neurons despite the fact that these cells also express NrCAM, suggesting that in retinal cells the F11-NrCAM interaction alone is not sufficient to induce neurite extension. In this report we present a novel image analysis procedure to quantify neurite outgrowth and use it to demonstrate that F11 enhances the fibronectin-induced outgrowth response of embryonic retinal neurons. We reveal that NrCAM is the neuronal receptor mediating the enhanced outgrowth of retinal neurons, whereas the related F11-binding molecule NgCAM is not involved. Furthermore, we provide evidence that a beta1-integrin may represent the fibronectin-dependent receptor that cooperates indirectly with the F11-NrCAM pathway. Our results support the concept of a combinatorial labeling of cells in nervous system histogenesis by different classes of cell surface proteins, in particular by integrins and molecules of the Ig superfamily.  相似文献   

10.
A fundamental issue in neurobiology entails the study of the formation of neuronal connections and their potential to regenerate following injury. In recent years, an expanding number of gene families has been identified involved in different aspects of neurite outgrowth and regeneration. These include neurotrophic factors, cell-adhesion molecules, growth-associated proteins, cytoskeletal proteins and chemorepulsive proteins. Genetic manipulation technology (transgenic mice, knockout mice, viral vectors and antisense oligonucleotides) has been instrumental in defining the function of these neurite outgrowth-related proteins. The aim of this paper is to provide an overview of the above-mentioned four approaches to manipulate gene expression in vivo and to discuss the progress that has been made using this technology in helping to understand the molecular mechanisms that regulate neurite outgrowth. We will show that work with transgenic mice and knockout mice has contributed significantly to the dissection of the function of several proteins with a key role in neurite outgrowth and neuronal survival. Recently developed viral vectors for gene transfer in postmitotic neurons have opened up new avenues to analyze the function of a protein following local expression in naive adult rodents. The initial results with viral vector-based gene transfer provide a conceptual framework for further studies on genetic therapy of neuroregeneration and neurodegenerative diseases.  相似文献   

11.
Previous observations from several groups suggest that acetylcholinesterase (AChE) may have a role in neural morphogenesis, but not solely by virtue of its ability to hydrolyze acetylcholine. We tested the possibility that AChE influences neurite outgrowth in nonenzymatic ways. With this aim, antisense oligonucleotides were used to decrease AChE levels transiently, and N1E.115 cell lines were engineered for permanently altered AChE protein expression. Cells stably transfected with a sense AChE cDNA construct increased their AChE expression 2.5-fold over the wild type and displayed significantly increased neurite outgrowth. Levels of the differentiation marker, tau, also rose. In contrast, AChE expression in cell lines containing an antisense construct was half of that observed in the wild type. Significant reductions in neurite outgrowth and tau protein accompanied this effect. Overall, these measures correlated statistically with the AChE level (p < 0.01). Furthermore, treatment of AChE-overexpressing cells with a polyclonal antibody against AChE decreased neurite outgrowth by 43%. We conclude that AChE may have a novel, noncholinergic role in neuronal differentiation.  相似文献   

12.
13.
Hepatocyte growth factor (HGF) is known to induce the dispersion of epithelial cells, as scatter factor. On the other hand, cadherins play a crucial role in connecting cells together. Two groups of cadherins are involved in epithelial cell adhesion, those locating in adherens junctions (AJ) and in desmosomes. Here, we examined the effect of HGF on the function of these cadherins in keratinocyte cell lines F and 308R, which expressed E- and P-cadherin in AJ (referred to as AJ cadherins) and desmoplakin in desmosomes. In the presence of HGF, these cells spread more extensively than in control cultures and their associations apparently loosened. However, they maintained cell-cell contacts where cadherins and desmoplakin concentrated, although the level of the concentration was reduced by HGF treatment. When antibodies to E- and P-cadherins were added to cultures of these cells without HGF, AJ cadherins were redistributed into non-junctional areas of the cells, but desmoplakin still localized at cell-cell boundaries. When HGF was added together with anti-AJ cadherin antibodies to the cultures, cell-cell contacts were now disrupted. In these cultures, not only AJ cadherins but also desmoplakin were lost at cell-cell contact sites, indicating that HGF can disrupt desmosomal cell-cell adhesion when AJ cadherins are inactive. These results suggest that, although HGF cannot block cadherin-mediated cell-cell adhesion when the entire cadherin system is intact, it might modulate the activities of cadherins, especially, of desmosomal cadherins.  相似文献   

14.
Fasciculation and defasciculation of axons are major morphogenetic events in the formation of neuronal pathways during development. We have identified the extracellular matrix glycoprotein tenascin-R (TN-R) and its neuronal receptor, the immunoglobulin superfamily recognition molecule F3, as promoters of neurite defasciculation in cerebellar explant cultures. Perturbation of the interaction between these two molecules using both antibodies and an antisense oligonucleotide resulted in increased neurite fasciculation. The domains involved in defasciculation were identified as the N-terminal region of TN-R containing the cysteine-rich stretch and the 4.5 epidermal growth factor-like repeats and the immunoglobulin-like domains of F3. Fasciculation induced by antibodies and the antisense oligonucleotide could be reverted by a phorbol ester activator of protein kinase C, whereas the protein kinase inhibitor staurosporine increased fasciculation. Our observations indicate that defasciculated neurite outgrowth does not only depend on the reduction of the expression of fasciculation enhancing adhesion molecules, such as L1 and the neural cell adhesion molecule (NCAM), but also on recognition molecules that actively induce defasciculation by triggering second messenger systems.  相似文献   

15.
Signalling interactions during facial development   总被引:1,自引:0,他引:1  
The development of the vertebrate face is a dynamic multi-step process which starts with the formation of neural crest cells in the developing brain and their subsequent migration to form, together with mesodermal cells, the facial primordia. Signalling interactions co-ordinate the outgrowth of the facial primordia from buds of undifferentiated mesenchyme into the intricate series of bones and cartilage structures that, together with muscle and other tissues, form the adult face. Some of the molecules that are thought to be involved have been identified through the use of mouse mutants, data from human craniofacial syndromes and by expression studies of signalling molecules during facial development. However, the way that these molecules control the epithelial-mesenchymal interactions which mediate facial outgrowth and morphogenesis is unclear. The role of neural crest cells in these processes has also not yet been well defined. In this review we discuss the complex interaction of all these processes during face development and describe the candidate signalling molecules and their possible target genes.  相似文献   

16.
Although cadherins appear to be necessary for proper cell-cell contacts, the physiological role of VE-cadherin (vascular endothelium cadherin) in adult tissue has not been clearly determined. To shed some light on this question, we have disturbed the adhesive function of VE-cadherin in human endothelial cell culture using a polyclonal anti-VE-cadherin antibody. This antibody disrupts confluent endothelial cell monolayers in vitro and transiently generates numerous gaps at cell-cell junctions. The formation of these gaps correlates with a reversible increase in the monolayer permeability. We present evidence that destruction of the homotypic interactions between the extracellular domains of VE-cadherin induces a rapid resynthesis of VE-cadherin, leading to restoration of endothelial cell-cell contacts. The expression of new molecules of VE-cadherin correlates with a modest but significant increase in VE-cadherin mRNA synthesis. Altogether, these results establish a critical role for VE-cadherin in the maintenance and restoration of endothelium integrity.  相似文献   

17.
Two glial cell types surround olfactory axons and glomeruli in the olfactory bulb (OB) and may influence synapse development and regeneration. OB astrocytes resemble type-1 astrocytes, and OB ensheathing cells resemble non-myelinating Schwann cells. We have produced clonal OB astrocyte and ensheathing cell lines from rat neonatal and adult OB cultures by SV40 large T antigen transduction. These cell lines have been characterized by morphology, growth characteristics, immunophenotype, and ability to promote neurite outgrowth in vitro. Neonatal and adult ensheathing cell lines were found to support higher neurite outgrowth than OB astrocyte lines. Neonatal OB astrocyte lines were of two types, high and low outgrowth support. The low support astrocyte lines express J1 and a chondroitin sulfate-containing proteoglycan as do astrocytes encircling the neonatal glomeruli in vivo. The adult OB astrocyte cell lines supported lower levels of outgrowth than adult ensheathing cell lines. These results are consistent with a positive role for ensheathing cells in OB synapse regeneration, in vivo. Further, based on our results, we hypothesize that ensheathing cells and high-outgrowth astrocytes facilitate axon growth in vivo, while low outgrowth astrocytes inhibit axon growth and may facilitate glomerulus formation.  相似文献   

18.
The cadherins are major mediators of calcium-dependent cell-cell adhesion and are also involved in cell signaling pathways during development. The classical cadherins, which are the definitive group of the cadherin superfamily, are transmembrane proteins that consist of an extracellular domain of five cadherin repeats, including an HAV tripeptide conserved in one binding surface within the first domain, and a highly conserved cytoplasmic domain that interacts with the actin cytoskeleton via the catenin proteins. These cadherins play major roles in vertebrate morphogenesis; they are expressed widely throughout development, antibodies to specific cadherins perturb a variety of developmental processes, and many gene knockouts are lethal at early stages of development. Phylogenetic analysis of the "classical" cadherins shows that in the vertebrates there are four paralog families. The rate of evolutionary change is radically different between the different paralogs, indicating that there are significantly different selection pressures on the functions of the various cadherins, both between the different paralogs in a single organism lineage and between different organism lineages within a single paralog family. There is also evidence for gene conversion between the E-cadherin and P-cadherin paralogs in Gallus gallus and possibly Xenopus laevis, but not between the same paralogs in the mammalian lineages. A scheme for the origin of the paralogs within the vertebrate lineage based on these analyses indicates that the presence of the four paralog families is a characteristic of vertebrates and that variation of cadherin structure and function is a significant factor in morphological evolution of vertebrates.  相似文献   

19.
Heparin-Binding Growth-Associated Molecule (HB-GAM)/pleiotrophin is an 18 kDa extracellular matrix- and cell-surface-associated protein shown to enhance neurite outgrowth of perinatal forebrain neurones in vitro. The heparan sulphate proteoglycan N-syndecan (Raulo et al., 1994) has been isolated as a receptor/coreceptor for the HB-GAM. We have investigated, whether HB-GAM and N-syndecan could have a similar role in neurite outgrowth and axon guidance in early axonal tracts of brain. In the present study N-syndecan was found to be spatiotemporally associated with the developing axonal tracts already on embryonic day 9 in rat, as revealed by coexpression with class III beta-tubulin, which is one of the earliest neuronal markers (Easter et al., 1993; Brittis et al., 1995). Later, N-syndecan and HB-GAM were detected in the first afferent serotonergic projections arising from the pontine raphe nuclei. The expression pattern of HB-GAM peaked in the developing rhombencephalon at embryonic stage (E) 13-14. At the same time, N-syndecan was expressed in the developing raphe neurones growing neurites towards the diencephalon along HB-GAM immunoreactive pathways. When rhombencephalic neurones were cultured on decreasing concentrations of substrate-bound HB-GAM, E13 neurones showed a significantly better neurite outgrowth response than E11, E16 or E18 neurones. The neurite outgrowth of raphe neurones in vitro was inhibited by adding soluble heparin or N-syndecan into the culture medium, whereas addition of chondroitin sulphate had no effect. In a simple pathway assay, E13 raphe neurones selectively preferred attaching and growing neurites on pathways containing HB-GAM as compared with regions containing either laminin or fibronectin alone. Our results suggest that HB-GAM may function as a developmentally regulated cue for rhombencephalic neurones that possess N-syndecan on their cell membrane.  相似文献   

20.
Cadherins are Ca2+-dependent cell-cell adhesion molecules, and are involved in the formation and maintenance of the organocellular architecture. Using a combination of molecular biologic and biochemical methods, we analyzed cadherins expressed on cultured human malignant lymphoma cell lines (adult T cell lymphomas, human T cell leukemia virus type 1-negative T cell lines, and thymus-derived lymphoma cell lines), and obtained evidence that N-cadherin is the major cadherin expressed on these cells. These cells were found to form cell aggregates in a Ca2+-dependent manner, and more importantly to coaggregate and adhere with cells expressing N-cadherin, suggesting that N-cadherin on lymphoma cells is functionally active. Therefore, N-cadherin expressed on lymphoma cells could underlie the frequent invasion of these cells into the mesenchymal tissue in the skin and the central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号