首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The response of structural elements under impact conditions is a particularly important consideration in the design of components made from composite materials. The understanding of this response includes both the impact behaviour and the influence of some design parameters and material properties. Thus, the dependence of the residual compressive strength of ballistically impacted carbon fibre reinforced plastic (CFRP) laminates on their thickness has been examined. A previously verified model developed by the authors, has been applied resulting in rather interesting findings about the effect of the thickness on the sensitivity of a laminate to impact. The model takes into account the number of plies, the impact energy and the stacking sequence. Experimental results derived from the literature have been used for the verification of the model and a close agreement between theoretical predictions and experimental results was found. Also, it can be concluded that the present work helps to optimize laminate impact behaviour by varying the laminate thickness. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

2.
This paper deals with modelling the compaction behaviour of dry fibre assemblies using an energy minimisation scheme. Compaction behaviour of textile preforms can significantly influence the resin permeability, fibre volume fraction and the geometry of individual tows. Tow geometry will in turn affect the elastic properties of the laminate, mode of damage initiation and progression. In this work, constitutive properties of yarns in bending and transverse compression were measured using Kawabata Evaluation System, and used for computing the potential energy stored in individual yarn segments within a preform. The compaction model has been experimentally verified for single and multi-layer 2D fabrics and 3D fabrics.  相似文献   

3.
In this work the crushing response and crashworthiness characteristics of thin-wall square FRP (fibre reinforced plastic) tubes that were impact tested at high compressive strain rate are compared to the response of the same tubes in static axial compressive loading. The material combination of the tested specimens was carbon fibres in the form of reinforcing woven fabric in epoxy resin, and the tested tubes were constructed trying three different laminate stacking sequences and fibre volume contents on approximately the same square cross-section. Comparison of the static and dynamic crushing characteristics is made by examining the collapse modes, the shape of the load–displacement curves, the peak and average compressive load and the absorbed amount of crushing energy in both loading cases. In addition, the influence of the tube geometry (axial length, aspect ratio and wall thickness), the laminate material properties-such as the fibre volume content and stacking sequence-and the compressive strain rate on the compressive response, the collapse modes, the size of the peak load and the energy absorbing capability of the thin-wall tubes is extensively analysed.  相似文献   

4.
Recently, very thick section laminates, up to 20 mm in thickness, have been proposed for the wing skins of large aircraft. Composite components in all aircraft have concerns relating to the presence of accidental damage, but there has been little work to investigate the mechanisms and effects of damage in such thick sections. In this work, carbon fibre composite laminates of up to 12 mm thickness have been subjected to dropped-weight impacts of at most 375 J. Two types of impacts were considered. The first is a central impact where the laminate is completely supported and the second a near edge impact where the laminate is partially supported so that one of its edges is free. The geometry of the damage has been studied using C-scan and deply techniques. The residual strengths of the impact-damaged laminates have been measured in tension and compression. The geometry of damage and level of strength reduction is different for central and edge impacts. Generally, an edge impact causes a greater reduction in compressive strength while a central impact causes more tensile strength reduction.  相似文献   

5.
The effect of metal-composite debonding on low-velocity impact response, i.e. on contact force–central deflection response, deformation profiles and strains on the free surfaces was studied. We focused on type 2/1 fibre metal laminate specimens made of stainless steel and carbon fibre epoxy layers, and tested them with drop-weight impact and quasi-static indentation loadings. Local strains were measured with strain gauges and full-field strains with a 3-D digital image correlation method. In addition, finite element simulations were performed and the effects of debonding were studied by exploiting cohesive elements. Our results showed that debonding, either the initial debonding or that formed during the loading, lowers the slope of the contact force–central deflection curve during the force increase. The debonding formation during the rebound phase was shown to amplify the rebound of the impact side, i.e. to lower the ultimate post-impact deflection. The free surface strains were studied on the laminate’s lower surface at the area outside the debond damage. In terms of in-plane strains, debonding formation during impact and indentation, as well as the initial debonding, lowered the peripheral strain and resulted in a positive change in the radial strain.  相似文献   

6.
In this experimental work the crash energy absorption of fibre reinforced plastic (FRP) tubular components that collapse in laminate splaying mode is investigated by means of a new testing method, the “curling test”. This test method was used trying rectangular carbon, aramid and glass FRP strips—in which the reinforcing fibres were in the form of reinforcing woven fabric (carbon and aramid FRP specimens) and multi-axial fibre reinforcements (glass FRP specimens). Apart from the analysis of the system of bending and friction forces acting on the specimens during the curling tests in comparison with the forces acting in the case the laminate splaying collapse mode and the observations related to the deformation and crushing induced on the FRP specimens by this force combination, the analysis of the test results focused on the influence of the most important geometric and laminate material properties—such as thickness, flexural rigidity, number of reinforcing fibre layers, laminate stacking sequence and constituent material mechanical properties—on the specific energy absorption and the peak load.  相似文献   

7.
Growth of carbon nanotubes (CNT) or carbon nano-fibres (CNF) on fibrous substrates is a way to increase the fracture toughness of fibre reinforced composites (FRC), with encouraging results reported in the recent years. The issues for these materials related to manufacturing of these composites are, however, less investigated. Following the study of compressibility of woven carbon fibre preforms with CNT/CNFs grown on the fibres using the CVD method [Compos Sci Technol 2011; 71(3): 315-325], this paper describes compression tests on the carbon tows used in these fabrics. The results of the measurements include pressure vs. thickness diagrams in consecutive compression cycles and hysteresis of the compression. The results confirm a drastic change of compressibility of fibrous assemblies in the presence of CNT/CNF grafting.  相似文献   

8.
Thornel 50 was continuously coated with pyrolytic carbon from an atmosphere of acetylene. Using resistance heating to raise the temperature of the graphite fibre yarn to 1100 to 1200° C, as much as 60% increase in weight of pyrolytic carbon could be uniformly applied to the surfaces of the individual filaments. The treated fibres gave improved interlaminar shear strengths up to 60 MN m?2 and improved flexural strengths up to 900 MN m?2 in epoxy resin composites. Visual examination of the fractured surfaces indicated that while the adhesion of the resin to the pyrolytic carbon was satisfactory, the adhesion of the pyrolytic carbon to the Thornel 50 fibre surface may have been less satisfactory and led to premature failure. Such continuous one stage treatments of graphite fibres offer advantages in terms of improved handling characteristics, greater oxidation and corrosion resistance, improved wettability, and slightly better impact toughness than other commercially available treated fibres. The resultant increase in the weight of the treated yarn may improve the economic aspects for applications which do not require highly flexible yarns.  相似文献   

9.
In this paper, response of stitched/unstitched woven fabric carbon/epoxy composite laminates subjected to high velocity impact loading is discussed. Aerospace grade plain and satin weave carbon fabrics were used to manufacture the laminate using a toughened SC-15 epoxy resin system with an affordable vacuum assisted resin infusion molding process. For fabrication of stitched laminates, a 3-cord Kevlar thread was used to stitch the fabric preform in lock stitch fashion in an orthogonal grid of size 12.7 and 25.4 mm with 6 mm stitch spacing. Unstitched laminates used in the study were made of 7, 17 and 37 layers whereas the stitched laminates were made of 7 and 17 layers. Four laminates of each type were subjected to high velocity impact loading at different velocity to determine the ballistic limit. The ensuing damage was characterized through ultrasonic NDE. Results of the study indicate that the damage was well contained within the stitch grid incase of stitched laminates. However, ballistic limit was higher for the unstitched laminates. Ballistic limit increased with the increase in the thickness of the laminate. Further, satin weave laminates exhibited higher ballistic limits in most of the cases.  相似文献   

10.
The mechanical performance and impact behaviour of carbon-fibre reinforced polyether-ether ketone (PEEK) with a (0, ±45) lay-up has been compared with that of a similar carbon fibre/epoxy laminate. Differences occurred because of the greater shear strength and lower shear modulus of the carbon-fibre reinforced PEEK. When compared with the carbon fibre/epoxy laminate, carbon-fibre reinforced PEEK was more notch sensitive in tension and had a lower undamaged compressive strength. However, after impact, the residual compressive strength was significantly greater for carbon-fibre reinforced PEEK because delamination was less extensive.  相似文献   

11.
The impact responses of typical laminates are investigated numerically in this research. Delamination responses among plies and fibre and/or matrix damage responses within plies are simulated to understand the behaviours of laminates under different impaction conditions. Damage resistance of a laminate is highly dependent upon several factors including geometry, thickness, stiffness, mass, and impact energies (impact velocities), which are here considered by the finite element (FE) method. Three groups of composite laminates are simulated and the numerical results in general are in good agreement with corresponding experiments. Models containing different stacking sequences and impact energies are built to study their influence on impact responses and demonstrate that clustered (or nearly clustered) plies in the laminate can effectively reduce the degree of interface damage. Models containing different indenters and plate shapes are also built to systematically study their influence on the low-speed drop-weight behaviour of composite laminates. Suggestions are proposed for designing impact tests for particular purposes.  相似文献   

12.
The potential use of carbon fibre laminate composites is limited by the weak out-of-plane properties, especially delamination resistance. The effect of incorporating titanium carbide to the mesophase pitch matrix precursor of carbon fibre laminate composites on interlaminar shear strength is studied both on carbonised and graphitised composites. The presence of titanium carbide modifies the optical texture of the matrix from domains to mosaics in those parts with higher concentrations and it contributes to an increase of fibre/matrix bonding. This fact produces an increase of the interlaminar shear strength of the material and changes the fracture mode.  相似文献   

13.
The paper addresses the problem of impact on layered fibre composites. The behaviour of composite laminates under impact loading is dependent not only on the velocity but also on the mass and geometry of the impactor. Using micromechanical Mori-Tanaka approach, mechanical properties of the laminate have been calculated utilizing the material constants of the fibre and matrix. General purpose FEM software ABAQUS has been modified by means of user written subroutines for modelling of composite laminate and rigid impactor. The kinematics of the impact has been simulated using transient dynamic analysis. Employing user defined multi point constraints, delamination zones have been modeled and visualised  相似文献   

14.
Drilling carbon fibre reinforced plastics (CFRPs) is typically cumbersome due to high structural stiffness of the composite and low thermal conductivity of plastics. Resin-rich areas between neighbouring plies in a laminate are prone to drilling-induced delamination that compromises structural integrity. Appropriate selection of drilling parameters is believed to mitigate damage in CFRPs. In this context, we study the effect of cutting parameters on drilling thrust force and torque during the machining process both experimentally and numerically. A unique three-dimensional (3D) finite element model of drilling in a composite laminate, accounting for complex kinematics at the drill-workpiece interface is developed. Cohesive zone elements are used to simulate interply delamination in a composite. Experimental quantification of drilling-induced damage is performed by means of X-ray micro computed tomography. The developed numerical model is shown to agree reasonably well with the experiments. The model is used to predict optimal drilling parameters in carbon/epoxy composites.  相似文献   

15.
This paper introduces a novel fibre structure known as the helical auxetic yarn (HAY). The geometry of the yarn is defined and the manufacturing process described. A range of HAYs have been manufactured that vary the geometric properties of the structure. A systematic study of the yarns has been completed to evaluate the effect on the auxetic behaviour of the geometry. We also characterise the component fibres and yarns and discuss the influence of geometric and material effects on the observed Poisson’s ratio of the yarns.It can be shown that the starting wrap angle of the yarn has the greatest effect on auxetic behaviour both in terms of magnitude and the strain range over which it may be observed.The maximum negative Poisson’s ratio observed for a yarn manufactured from conventionally available monofilaments with positive Poisson’s ratio is −2.7.  相似文献   

16.
Fibre woven thermoplastic composites (FWTC) are widely used in aerospace and other fields because of their excellent performance. During service, FWTC structures are inevitably subjected to low-velocity impact (LVI), which can cause invisible damage and eventual failure of the material. At the moment, studies on FWTC mostly focused on the orthogonal woven yarns while there's few reports about the effect of the yarn angle changing on the woven material's LVI damage response. This study aims at the effect of yarn angle changing on the damage behaviour of FWTC. A method for preparation of nonorthogonal prepregs was proposed, by which FWTC laminates with different yarn angles (60°, 75°, and 90°) were prepared for LVI tests. The results show that the maximum impact displacement and the impact duration of the impactor decrease with the decrease of the yarn angle when the FWTC laminate is subjected to LVI, while the maximum impact force shows an increasing trend. This indicates that the smaller yarn angle causes the better load-bearing capacity of the FWTC laminate under LVI conditions, while the orthogonal FWTC laminate is more ductile. The damage morphology indicated by the impact of the FWTC laminate are matrix cracks and yarn breaks, and the damage area increases with the decrease of yarn angle, where the damage of orthogonal laminate is more serious more concentrated. The results found in this paper can provide useful guidance for engineering applications and failure analysis of FWTC.  相似文献   

17.
3D interlock woven fabrics are promising materials to replace the 2D structures in the field of ballistic protection. The structural complexity of this material caused many difficulties in numerical modeling. This paper presents a new tool that permits to generate a geometry model of any woven fabric, then, mesh this model in shell or solid elements, and apply the mechanical properties of yarns to them. The tool shows many advantages over existing software. It is very handy in use with an organization of the functions in menu and using a graphic interface. It can describe correctly the geometry of all textile woven fabrics. With this tool, the orientation of the local axes of finite elements following the yarn direction facilitates defining the yarn mechanical properties in a numerical model. This tool can be largely applied because it is compatible with popular finite element codes such as Abaqus, Ansys, Radioss etc. Thanks to this tool, a finite element model was carried out to describe a ballistic impact on a 3D warp interlock Kevlar KM2? fabric. This work focuses on studying the effect of friction onto the ballistic impact behavior of this textile interlock structure. Results showed that the friction among yarns affects considerably on the impact behavior of this fabric. The effect of the friction between projectile and yarn is less important. The friction plays an important role in keeping the fabric structural stability during the impact event. This phenomenon explained why the projectile is easier to penetrate this 3D warp interlock fabric in the no-friction case. This result also indicates that the ballistic performance of the interlock woven fabrics can be improved by using fibers with great friction coefficients.  相似文献   

18.
Transverse compression response of tows during processes such as vacuum infusion or autoclave curing has significant influence on resin permeability in fabrics as well as the laminate thickness, fibre volume fraction and tow orientations in the finished composite. This paper reports macro –scale deformations in dry fibre assemblies due to transverse compaction. In this study, influence of weave geometry and the presence of interlacements or stitches on the ply-level compaction as well as nesting have been investigated. 2D woven fabrics with a variety of interlacement patterns - plain, twill and sateen- as well as stitched Non-crimp (NCF) fabrics have been investigated for macro-level deformations. Compression response of single layer and multilayer stacks has been studied as a function of external pressure in order to establish nesting behaviour. It appears that the degree of individual ply compaction and degree of nesting between the plies are influenced by tow architectures. Inter-tow spacing and stitching thread thickness appears to influence the degree of nesting in non-crimp fabrics.  相似文献   

19.
缝合复合材料层板低速冲击损伤数值模拟   总被引:2,自引:0,他引:2       下载免费PDF全文
建立了缝合复合材料层板在低速冲击载荷下的渐进损伤分析模型。模型中采用空间杆单元模拟缝线的作用;采用三维实体单元模拟缝合层板,通过基于应变描述的Hashin准则,结合相应的材料性能退化方案模拟层板的损伤和演化;采用界面单元模拟层间界面,结合传统的应力失效判据和断裂力学中的应变能释放率准则判断分层的起始和扩展规律。通过对碳800环氧树脂复合材料(T800/5228)层板的数值仿真结果和试验结果相比较,验证了模型的正确性,同时讨论了不同冲击能量下缝合层板的损伤规律。研究结果表明:缝线能够有效地抑制层板的分层损伤扩展;相同冲击能量下缝合与未缝合层板的基体损伤和纤维损伤在厚度分布上相似,缝合层板的损伤都要小于未缝合层板。  相似文献   

20.
An optimization procedure using a genetic algorithm has been applied to define the optimum orientation of fibres in a uni-directional laminate in which the fibres were allowed to vary continuously across the domain. The domain was divided into two-dimensional finite elements and anisotropic properties corresponding to a carbon fibre laminate with all layers aligned in the zero element axis direction were applied to the laminate. The orientation of the material axis on each element was then prescribed as an independent variable for the genetic algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号