首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The final geometry of 3D warp interlock fabric needs to be check during the 3D forming step to ensure the right locations of warp and weft yarns inside the final structure. Thus, a new monitoring approach has been proposed based on sensor yarns located in the fabric thickness. To ensure the accuracy of measurements, the observation of the surface deformation of the 3D warp interlock fabric has been joined to the sensor yarns measurements. At the end, it has been revealed a good correlation between strain measurement done globally by camera and locally performed by sensor yarns. Additionally, sensor yarns located in the two directions of the 3D warp interlock fabric have revealed a different forming behaviour depending on the architecture and the different slope values of the punch.  相似文献   

2.
3D warp interlock fabric can be used as a fibrous reinforcement for composite material. Despite of the numerous research papers dealing with this specific woven structure, few researches were conducted to clearly define this multi-layer fabric. Moreover, in many research papers, unskilled scientists of weaving technology have some difficulty to describe the different components of the 3D warp interlock fabric and sometimes make some confusion between the different architecture. Then, with a lack of a clear definition of these 3D multi-layer fabrics, most of the research papers are conducted on a very limited number of structures such as orthogonal, angle and layer to layer interlock.Thus, based on different definitions proposed by skilled scientists, a new general definition of a 3D warp interlock fabric has been proposed to better describe the position of the several yarns located inside the 3D woven structure. Thanks to this improved definition, we hope that the scientific community will use it in order to better design new architectures and conduct finer research based on these product parameters.  相似文献   

3.
3D interlock woven fabrics are promising materials to replace the 2D structures in the field of ballistic protection. The structural complexity of this material caused many difficulties in numerical modeling. This paper presents a new tool that permits to generate a geometry model of any woven fabric, then, mesh this model in shell or solid elements, and apply the mechanical properties of yarns to them. The tool shows many advantages over existing software. It is very handy in use with an organization of the functions in menu and using a graphic interface. It can describe correctly the geometry of all textile woven fabrics. With this tool, the orientation of the local axes of finite elements following the yarn direction facilitates defining the yarn mechanical properties in a numerical model. This tool can be largely applied because it is compatible with popular finite element codes such as Abaqus, Ansys, Radioss etc. Thanks to this tool, a finite element model was carried out to describe a ballistic impact on a 3D warp interlock Kevlar KM2? fabric. This work focuses on studying the effect of friction onto the ballistic impact behavior of this textile interlock structure. Results showed that the friction among yarns affects considerably on the impact behavior of this fabric. The effect of the friction between projectile and yarn is less important. The friction plays an important role in keeping the fabric structural stability during the impact event. This phenomenon explained why the projectile is easier to penetrate this 3D warp interlock fabric in the no-friction case. This result also indicates that the ballistic performance of the interlock woven fabrics can be improved by using fibers with great friction coefficients.  相似文献   

4.
This research studied the flexural behavior of textile reinforced cement-based composites reinforced with 3D fabrics. Three different 3D fabrics were examined, each with a different orientation of the spacer yarns. This work focused on the influences involved in the two plane fabric directions, weft and warp. Plain 2D fabrics (not in cement) and within the cement were also examined for comparison. It was found that the warp direction of the plain fabric has higher tensile strength than the weft direction. On the contrary, when the fabric is in a composite, the weft direction presents improved behavior in flexure due to three mechanisms: the tightening of the warp bundles by the loops, the waviness of the warp yarns, and the angle of the yarns located along the composite thickness to the loading direction. In general, compared with 2D fabrics, 3D fabrics are highly beneficial reinforcements for cement-based composites due to their greater reinforcing efficiency via mechanical anchoring.  相似文献   

5.
Forming of continuous fibre reinforcements and thermoplastic resin commingled prepregs can be performed at room temperature due to its similar textile structure. The “cool” forming stage is better controlled and more economical. The increase of temperature and the resin consolidation phases after the forming can be carried out under the isothermal condition thanks to a closed system. It can avoid the manufacturing defects easily experienced in the non-isothermal thermoforming, in particular the wrinkling [1]. Glass/Polypropylene commingled yarns have been woven inside different three-dimensional (3D) warp interlock fabrics and then formed using a double-curved shape stamping tool. The present study investigates the in-plane and through-thickness behaviour of the 3D warp interlock fibrous reinforcements during forming with a hemispherical punch. Experimental data allow analysing the forming behaviour in the warp and weft directions and on the influence of warp interlock architectures. The results point out that the layer to layer warp interlock preform has a better stamping behaviour, in particular no forming defects and good homogeneity in thickness.  相似文献   

6.
Measurements of the internal geometry of a carbon fiber non-crimp 3D orthogonal woven composite are presented, including: waviness of the yarns, cross sections of the yarns, dimensions of the yarn cross sections, and local fiber volume fraction. The measured waviness of warp and fill yarns are well below 0.1%, which shows that the fabric termed here “non-crimp” has nearly straight in-plane fibers as-produced, and this feature is maintained after going through all steps of fabric handling and composite manufacturing. The variability of dimensions of the yarns is in the range of 4–8% for warp and fill directions, while the variability of the yarn spacing is in the range of 3–4%. These variability parameters are lower than respective ranges of variability of the yarn waviness and the cross-sectional dimensions in typical carbon 2D weave and 3D interlock weave composites, which are also illustrated in this work for comparison.  相似文献   

7.
Due to their improved mechanical properties, 3D multi-layer spacer fabrics could be used for lightweight applications such as textile-based sandwich preforms. Modern flat knitting machines using high performance yarns are able to knit complex 3D multi-layer spacer fabrics consisting of individual surface and connecting layers. This paper reports on the development of 3D flat knitted spacer fabric for 3D thermoplastic composites using hybrid yarns made of glass (GF) and polypropylene (PP) filaments. Moreover, mechanical properties of reinforcement yarns, 2D knit fabrics and 2D composites manufactured using various integration methods of reinforcement yarns were also studied. The integration of reinforcement yarns as biaxial inlays (warp and weft yarns) is found to be the best solution for knitting, whereas the tuck stitches show optimal results.  相似文献   

8.
In this paper, the formability of a single layer E-glass non-crimp 3D orthogonal woven reinforcement (commercialized under trademark 3WEAVE® by 3Tex Inc.) is experimentally investigated. The study involves the forming process of the 3D fabric on two complex moulds, namely tetrahedron and double-dome. The tests are assisted by 3D digital image correlation measurement to have a continuous registration of the fabric local deformation. Moreover, the results of bending tests in warp and weft direction are detailed to enlarge the mechanical properties data set of the 3D reinforcement, necessary for understanding its deformability capacities in forming processes. The elevated bending stiffness of the 3D fabric means that use of a blank-holder during forming is not required. The reinforcement has a good drapability and it is able to form complex shapes without defects (wrinkles and fibre distortions). The collected experimental results represent an important dataset for numerical simulations of any complex shape with the considered 3D fabric composite reinforcement.  相似文献   

9.
Three different architectures of 3D carbon fibre woven composites (orthogonal, ORT; layer-to-layer, LTL; angle interlock, AI) were tested in quasi-static uniaxial tension. Mechanical tests (tensile in on-axis of warp and weft directions as well as 45° off-axis) were carried out with the aim to study the loading direction sensitivity of these 3D woven composites. The z-binder architecture (the through-thickness reinforcement) has an effect on void content, directional fibre volume fraction, mechanical properties (on-axis and off-axis), failure mechanisms, energy absorption and fibre rotation angle in off-axis tested specimens. Out of all the examined architectures, 3D orthogonal woven composites (ORT) demonstrated a superior behaviour, especially when they were tested in 45° off-axis direction, indicated by high strain to failure (∼23%) and high translaminar energy absorption (∼40 MJ/m3). The z-binder yarns in ORT architecture suppress the localised damage and allow larger fibre rotation during the fibre “scissoring motion” that enables further strain to be sustained by the in-plane fabric layers during off-axis loading.  相似文献   

10.
Spacer fabrics belong to the category of 3D hollow structures, and consist of two separate fabric layers that are connected with pile yarns or fabric layers maintaining hollow space between adjacent connecting yarns or fabric layers. In this study, spacer structures connected with woven cross-links having three different cross-sections of the hollow tunnels: rectangular, trapezoidal and triangular, along the weft direction, were produced using 600 tex E-glass tows. All the sections of the structures were plain 2D fabrics with all constituent layers having the same construction. These fabric structures were then converted to composites, with epoxy resin as matrix, using vacuum assisted resin infusion molding (VARIM) technique. The produced composite samples were characterized for their lateral compressive properties. This study provides an insight into the production of sandwich structures connected with woven cross-links, and their load bearing capabilities. The results indicated that the compressive strength of structure depends mainly on the thickness of the cell walls and its angle with the horizontal layer.  相似文献   

11.
A new computational approach is developed to predict the impact behaviour of fabric panels based on the detailed response of the smallest repeating unit (unit cell) in the fabric. The unit cell is constructed and calibrated using measured geometrical (weave architecture, crimp, voids, etc.) and mechanical properties of the fabric. A pre-processor is developed to create a 3D finite element mesh of the unit cell using the measured fabric cross-sectional micro-images. To render an efficient method for simulation of multi-layer packs, these unit cells are replaced with orthotropic shell elements that have similar macroscopic (smeared) mechanical properties as the unit cell. The aim is to capture the essence of the response of a unit cell in a single representative shell element, which would replace the more complicated and numerically costly 3D solid model of the yarns in a crossover. The 3D finite element analysis of the unit cell is used to provide a baseline mechanical response for calibrating the constitutive model in the equivalent shell representation. This shell element takes advantage of a simple physics-based analytical relationship to predict the behaviour of the fabric's warp and weft yarns under general applied displacements in these directions. The analytical model is implemented in the commercial explicit finite element code, LS-DYNA, as a user material routine (UMAT) for shell elements. Layers of fabric constructed from these specialized elements are stacked together to create fabric targets that are then analysed under projectile impact. This approach provides an efficient numerical model for the dynamic analysis of multi-layer fabric structures while taking into account several geometrical and material attributes of the yarns and the fabric.  相似文献   

12.
Concrete is a composite material composed of water, sand, coarse granular material called aggregate and cement that fills the space among the aggregate particles and glues them together. Conventional building structures are made up of steel skeleton with concrete impregnation. These are very heavy weight structures with steel vulnerable to corrosion. The conventional concrete structures tend to undergo large deformations in the event of a strong earthquake. Mechanical simulation of various textile structural concretes is carried out successfully for their ductility behaviour. 3D woven reinforced concretes display superior ductile character showing ray of hope to develop seismic resistant building. Simulation of three 3D woven fabrics and their composites was carried to predict ductility and strengths of fabric reinforced concrete structures. Maximum deformation was observed for beam reinforced with orthogonal interlock fabric under the same load and minimum deformation was observed for plain concrete. Maximum equivalent stress was observed to be highest for plain concrete followed by beam reinforced with angle interlock fabric followed by orthogonal fabric and warp interlock fabric under similar loading conditions. From the results it was clear that 3D fabric reinforced structures are more ductile than the traditional steel reinforced structures. Hence 3D fabric reinforced concrete structures are much better in strength and ductility as compared to conventional construction materials. Among the three 3D fabric, orthogonal fabric reinforced composites are most ductile and are also less stiff. They can deform more than the other two fabric composites. Hence, orthogonal fabric reinforced composites can undergo higher deformations without collapsing. These composites can be more elastic under earthquake shaking.  相似文献   

13.
In this paper, damage mechanisms of a 3D interlock woven fabric subjected to ballistic impact were analyzed using a numerical model. Two impact configurations were carried out in order to validate the numerical model with experimental observations: perforation (900 m/s) and no-perforation (90 m/s). Global deformation of the fabric during impact is determined continuously to detail fabric impact behavior. Also, in this study, the effects of boundary conditions on failure mechanisms have been investigated. Boundary conditions are divided into two cases: (1) only warp yarns fixed and (2) only weft yarns fixed. Basing on continuous evolutions of global deformation, projectile velocity, different energies and reaction force onto projectile, the influence of both these fixation conditions is investigated.  相似文献   

14.
Applied Composite Materials - This research paper presented recent advancements on the manufacturing technique of the 3D warp interlock fabrics (3DWIFs) as fibrous material. Four different types of...  相似文献   

15.
This research studied the flexural behavior of cement-based elements reinforced with 3D fabrics. The effects of the through-thickness (Z direction) yarns were examined in terms of four parameters: (i) yarn properties, (ii) varying the composite content of (i.e., coverage by) high-performance aramid yarn, (iii) treatment of the fabric with epoxy, and (iv) 2D and 3D fabric composites were compared. Overall, the 3D fabric composites performed better than the 2D fabric composites, which tended to delaminate. Our results indicate that even though the Z yarns are not oriented in the direction of the applied loads, 3D fabrics still have potential applications as reinforcements for cement-based composites. Indeed, the Z yarns hold the entire fabric together, which leads to improved mechanical anchoring and mechanical properties particularly when the fabric has been treated with epoxy, i.e., to create a stiff reinforcing unit.  相似文献   

16.
不同针织结构经编碳纤维复合材料弯曲性能   总被引:4,自引:2,他引:2  
通过对3种不同针织方式碳纤维经编织物结构的分析和弯曲性能测试, 研究了织物针织方式对NCFs复合材料力学性能的影响。采用链式缝编的 织物与经平缝编的 织物相比, 束缚效果更好, 经编线引起的纤维变形区的宽度较小, 因此 织物增强的复合材料中的富树脂区和空洞相对较少, 弯曲强度和模量均高于 复合材料。单向经编织物也采用经平缝编, 纤维取向与双轴向织物相比更准确, 由于缝编引起的纤维变形和损伤较少, 复合材料的弯曲性能高于两种双轴向经编材料。   相似文献   

17.
Reinforcement of cementitious matrices by warp knitted fabrics   总被引:1,自引:0,他引:1  
The efficiency of knitted fabrics for reinforcing cementitious composites was studied. Weft insertion warp kiitting fabrics of controlled structure were especially produced for this work consisting of high modulus (Kevlar and Polyethylene) and low modulus (Polypropylene) polymers. The performance of the fabrics was studied by evaluating the flexural properties of the composites and the bond to the matrix. The performance of the knitted fabrics was compared to that of the straight yarns from which the knitted fabrics were made, as well as comparison with woven fabric reinforcement. It was concluded that: (i) in the knitted fabric reinforcement greater efficiency was achieved in fabrics consisting of high modulus polymer yarns, which are made of bundles consising of a smaller number of filaments, (ii) the reinforcing effect of the knitted fabric is smaller than that of the individual straight yarns, (iii) the reinforcing efficiency of woven fabric reinforcement is better than that of the knitted fabric, due to the crimped structure of the yarns in the woven fabric. In view of these conclusions, it might be stated that the use of weft insertion warp knitting fabric for cement reinforcement is advantageous in the sense that the fabric can provide the means by which a composite can be produced with continuous and aligned yarns. However, with this kind of fabric some of the reinforcing efficiency of the individual yarns is lost. In contrast, the use of woven fabric can provide all of the above, with the added advantage of enhanced reinforcing efficiency over the straight yarns, induced by their crimping in the woven fabric.  相似文献   

18.
The mechanical behaviour of fabric-reinforced composites can be affected by several parameters, such as the properties of fabrics and matrix, the fibre content, the bond interphase and the anchorage ability of fabrics. In this study, the effects of the fibre type, the fabric geometry, the physical and mechanical properties of fabrics and the volume fraction of fibres on the tensile stress–strain response and crack propagation of cementitious composites reinforced with natural fabrics were studied. To further examine the properties of the fibres, mineral fibres (glass) were also used to study the tensile behaviour of glass fabric-reinforced composites and contrast the results with those obtained for the natural fabric-reinforced composites. Composite samples were manufactured by the hand lay-up moulding technique using one, two and three layers of flax and sisal fabric strips and a natural hydraulic lime (NHL) grouting mix. Considering fabric geometry and physical properties such as the mass per unit area and the linear density, the flax fabric provided better anchorage development than the sisal and glass fabrics in the cement-based composites. The fabric geometry and the volume fraction of fibres were the parameters that had the greatest effects on the tensile behaviour of these composite systems.  相似文献   

19.
《Composites Part A》2001,32(10):1395-1414
The forming of fibre fabric reinforcements without a matrix is possible because of their very specific mechanical behaviour. The lack of some rigidities is due to possible motions between the fibres. For the fabrics used as reinforcement in the R.T.M. process and composed of warp and weft yarns made with untwisted fibres, the tension stiffness is very preponderant compared to the others. The tensile behaviour of such a fabric is biaxial, i.e. the tension-deformation states in warp or weft directions depend on the other direction because of the interweaving. It is given by the knowledge of two surfaces relating the warp and weft tensions to the two strains in these directions (or that of a single surface if the fabric is balanced). In the present paper, three complementary methods are investigated in order to determine these surfaces. A biaxial tensile device on a cross-shaped specimen is first used. 3D finite element simulations of the unit woven cell are then presented. This mesoscopic study permits to understand some phenomena at the elementary woven cell level. Finally a simplified model, which is consistent with the geometry of the plain weave woven mesh is presented. The agreement of the two last methods with experimental results is shown. From these tensile behaviour surfaces, a dynamic explicit approach for the simulations of a fabric sheet forming process is presented. The interests of the method are both its good numerical efficiency, particularly due to the direct use of the biaxial tension surfaces, and its proximity with fabric physics.  相似文献   

20.
The main aim of the research is to determine electrical anisotropy of woven fabrics to describe the multidirectional dependence of the electrical resistance of woven fabrics. The van der Pauw electrodes configuration is used to determine the electrical resistance. Scanning electron microscope–energy-dispersion X-ray spectroscopy (SEM–EDS) analysis is carried out to identify the real amount of conductive elements on a fabric surface as a result of yarns or fabric metallization and to explain the electrical conductivity of the textile materials. The planar electrical anisotropy of electroconductive woven fabrics is observed. The maximum and minimum values of resistances of woven fabric are connected with the weft/warp of which direction coincides with the direction of the longitudinal and transversal axes in the sample plane. SEM–EDS analysis confirms that the electrical conductivity of fabrics depends on the samples elemental composition and the amount of metals deposited on yarns or woven fabrics. It is observed that the sample metallization with thick coating gives a better solution than weaving textiles from coated yarns from the point of view of electrical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号