首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
提出一种改进差分进化算法(IDE),以解决系统可靠性冗余分配问题.在罚函数法的基础上,对约束处理方法进行改进. 新约束处理方法在搜索过程中不需要在每一步都计算惩罚函数值,加快了寻优速度.具有良好的通用性,可以引入到其他智能优化算法中.将改进的算法用于求解4类典型的系统可靠性冗余分配问题,实验结果表明了所提出的改进算法具有很好的寻优精度和收敛速度.  相似文献   

2.
针对动态经济调度(DED)存在的不可微、非凸性、非线性以及不连续性等特点,提出多策略异维变异差分进化(MDMDE)算法.一方面,从变异维数入手,提出了一种异维变异策略;另一方面,在算法的整个迭代周期内采用了多策略变异.此外,还提出了一种修改的交叉率以及动态变异因子来跳出局部最优.最后,将MDMDE应用于6种动态经济调度...  相似文献   

3.
为解决多机风电并网系统的稳定性问题,提出在风电并网系统的同步发电机(SG)中安装电力系统稳定器(PSS),利用差分进化算法解决SG中自动电压调节器(AVR)和PSS参数的最优调节问题。在有、无PSS以及是否使用差分进化法的各种情况下对风电并网系统稳定性进行了研究分析,研究表明通过差分进化法的协同调节使含AVR和PSS的风电并网系统有良好的阻尼作用,能减少发电机转子角差振荡,提高电压稳定性,通过仿真结果对比可知差分进化法可使并网系统稳定性明显提高。  相似文献   

4.
改进差分进化策略在多峰值函数优化中的应用   总被引:2,自引:0,他引:2       下载免费PDF全文
针对差分演化算法与进化策略算法中所存在的不足,将模拟退火算子引入到差分演化算法的变异操作中,这样有助于在进化前期进行全局搜索,后期进行局部搜索;在标准进化策略的基础上,加入差分变异操作,提出了一种新的差分进化策略双重变异算法。通过测试算例可看出,该方法在多峰值函数优化问题中,具有求解精度较高,收敛速度较快等特点。  相似文献   

5.
针对标准差分进化(DE)收敛速度慢和操作过程中参数为常数从而导致算法鲁棒性相对较差的缺点,采用以个体适应度值最优的个体为基矢量,沿次优个体方向搜索的变异策略来提高算法的搜索速度;提出根据差分矢量大小和个体收敛情况自适应调整变异参数F和交叉概率CR的自适应参数调整策略来确保搜索初期种群的多样性和后期算法的局部搜索能力。并将基于该改进差分进化算法(MDE)优化后的PID控制器用于水厂加药凝絮过程的控制,仿真结果表明该算法收敛速度快,基于该算法的MDE-PID控制器性能好,是PID控制器参数整定的有效搜索方法,也是实现水厂加药凝絮过程良好控制的有效途径。  相似文献   

6.
针对模糊神经网络控制器在应用误差反向传播算法训练时,易于陷入局部最优的问题,提出了一种将差分进化算法与BP算法相结合的学习法,首先利用差分进化算法的全局寻优能力,给BP算法一个好的寻优初始点;然后再以一定的概率进行BP算法的寻优.对一个带有滞后环节的二阶系统进仿真表明,控制性能优于基于BP的模糊神经网络控制器.  相似文献   

7.
差分进化算法在双指数拟合中的应用   总被引:1,自引:0,他引:1  
利用差分进化算法较好地解决了一元四参数双指数和两元三参数双指数拟合问题。与传统优化算法相比,不受初值的影响,并具有全局收敛性,与PSO算法相比,收敛速度快,是一种求解非线性约束优化问题的有效方法。  相似文献   

8.
针对0-1任务规划模型存在维数灾维的问题,提出了一种基于改进差分进化算法的整数任务分配算法。将任务分配的0-1规划模型转化整数规划模型,不仅大幅降低了优化变量的维数,还减小了整式约束条件;将差分进化算法常用的变异算子DE/rand/1/bin和DE/best/2/bin结合起来组成新的变异算子,使得DE既保持了种群的多样性,又有较快的收敛速度和搜索精度,并用改进的差分进化算法求解整数规划;通过典型的任务分配实例验证了该算法在优化大规模任务分配的有效性和快速性。  相似文献   

9.
进化策略是一类策略参数自适应进化算法。文章提出了一种改进进化策略(MES),MES采用基于个体排序的随机自适应Gaussian-Cauchy混合变异策略,将Gaussian和Cauchy变异算子结合起来以达到全局探索和局部搜索之间的动态平衡。此外,MES还使用重组算子以进一步提高算法的性能。将该算法用于多层前向神经网络训练,数值仿真结果显示了该算法的有效性。  相似文献   

10.
一种基于差分进化算法的多模型建模方法   总被引:2,自引:0,他引:2  
李庆良  雷虎民  邵雷  陈治湘 《控制与决策》2010,25(12):1866-1869
针对非线性系统的多模型建模问题,基于差分进化算法提出了一种优化建模方法.从系统的输入输出数据出发,将样本空间分割与局部模型建立相结合,首先将PWA辨识问题转化为MIQP问题;然后采用自适应混沌差分进化算法对模型数量及模型参数同时优化;最后利用支持向量基求取分割曲面方程.仿真结果表明,该方法能以最优的线性子模型集准确地逼近非线性系统.  相似文献   

11.
差分演化算法有局部搜索能力不足、容易跌入局部最优等缺点,其搜索性能主要依赖于对杂交概率和缩放因子的设置。为了改善上述缺陷,对带归档的自适应差分演化算法JADE进行深入的研究与分析,提出了改进的自适应差分演化算法ZJADE。该算法采用斜帐篷混沌映射函数初始化种群,在每次迭代中为每个个体分别产生满足正态分布、柯西分布的杂交概率和满足正态分布的缩放因子,并且记录成功变异个体的杂交概率和缩放因子,引入统计杂交概率,采用两种策略自适应地更新杂交概率。在13个经典测试函数上将ZJADE算法与多种经典自适应差分演化算法进行对比,实验结果表明,ZJADE算法在解的精度与收敛速度上更优,具有更好的搜索性能。  相似文献   

12.

针对多处理器系统任务调度复杂问题, 在自适应差分进化算法基础上增加惯性速度分项, 提出一种称为惯性速度差分进化(IVDE) 的改进算法, 以避免陷入局部最优解. 结合启发式任务列表, 对算法的状态编码提出了处理器列表(PL)、部分偏序任务列表(PTL) 和全部任务列表(CTL) 等3 种形式. 通过求解随机生成的任务调度标准图和真实求解任务问题, 进行了数值仿真验证, 其中PTL-IVDE 算法相比蚁群优化(ACO) 算法、混合遗传算法(TLPLC-GA), 能快速求得更好的任务调度方案.

  相似文献   

13.
差分进化算法是一种具有记忆个体最优解和种群内部信息共享的特点的新型进化算法,本质上可看做是一种基于实数编码的、具有保优思想的贪婪遗传算法。针对具有NP难的车辆路径优化问题,提出了一种改进的差分进化算法。利用贪心算法产生初始种群,定义合法化修复变异个体的方法,采用改进的顺序交叉,并在变异操作之后,加入新的选择机制。使用Matlab进行了算法的实现,实验结果表明了改进DE算法能够高效地解决VRP问题。  相似文献   

14.
针对传统狼群算法(WPA)存在易陷入局部最优解、计算资源耗费大、鲁棒性低等问题,提出一种基于差分进化的改进狼群算法(DWPA)。首先,通过引入探狼搜索因子、猛狼最大奔袭次数、自适应围攻步长、差分进化策略等对传统狼群算法进行了改进,降低算法计算耗费的同时提高了算法的全局搜索能力;然后,运用马尔可夫链理论证明了DWPA的收敛性;最后,对13个测试函数进行寻优测试并与WPA等4种算法进行对比分析。测试结果表明,DWPA具有良好的鲁棒性和全局搜索能力,在求解多峰、高维、不可分函数方面的寻优能力尤为突出。  相似文献   

15.
差分进化算法是进化算法中一种性能较为优良的全局数值优化算法,已在人工智能、信号处理等方面取得广泛应用,但当前研究往往仅考虑进化过程中某一代种群的分布信息,而忽略进化过程中多代种群累积的分布信息,造成信息利用不充分。借助自适应协方差矩阵进化策略的思想,充分利用进化过程中累积的种群分布信息,同时,由于自适应协方差矩阵存在收敛早熟、易陷入局部最优的缺点,先后对变异和交叉操作进行相应改进,以平衡算法的全局搜索能力和局部搜索能力。首先,根据种群中个体适应度值进行排序,由余弦函数改进的概率模型计算个体参与变异操作的概率,基向量和差分向量中末端向量根据概率值降序选择,差分向量中起始向量升序选择,从而提高种群的搜索范围;然后,对协方差矩阵进行特征分解,并在由特征向量构建的坐标系中执行交叉操作,该种方式生成的实验向量更接近全局最优解。针对上述改进操作,采用IEEE CEC2014作为评估函数,实验结果表明,相比现有的差分进化改进算法,本改进算法的实验性能提升更为明显。  相似文献   

16.
吴文海  郭晓峰  周思羽 《控制与决策》2020,35(10):2381-2390
为解决三维复杂环境下无人机动态航迹规划问题,提出一种基于改进约束差分进化算法的动态航迹规划方法,以满足对实时性及动态搜索精度的要求.首先,根据无人机航迹规划特点将其描述为包括飞行约束及威胁约束在内的约束优化问题,并构造目标代价函数和约束限制函数;其次,将广义反向学习和自适应排序变异操作引入到约束差分进化算法中,以提高算法的多样性、收敛速度和寻优精度;最后,利用自适应权衡模型对各状态下的约束限制进行处理,充分利用"精英"个体信息,实现对目标适应值的合理转换.通过仿真实验以及与3种先进约束差分进化算法比较表明:所提方法能够有效实现静态及动态威胁回避,规划出安全适航的飞行路径,实现地形跟随;相较于其他3种算法,所提方法具有寻优性能好、鲁棒性强、收敛速度快和可靠性高等优势.  相似文献   

17.
针对传统云计算资源调度策略存在资源利用率低等缺陷,提出了一种基于改进差分进化算法的云计算任务调度算法(LADE)。首先建立云计算任务调度问题的数学模型,然后采用差分进化算法对目标函数进行求解,并引入自适应的放缩因子和交叉算子进行改进,使算法更符合最优解的求解规律,有效地避免陷入局部最优解和"早熟"的缺陷。仿真实验表明:LADE算法具有更强的全局搜索能力,不仅解决了传统资源调度算法存在的缺陷,而且大幅减少了云计算任务的完成时间和执行能耗。  相似文献   

18.
为提高多目标差分进化算法求解多目标优化问题的能力,提出一种基于策略自适应的多目标差分进化算法(multi-objective differential evolution algorithm based on self-adaptive strategy,MODE-SS)。该算法采用超体积(hyper-volume,HV)对变异策略进行性能评价,并实现变异策略的自动选择;使用动态调整的二项式交叉策略和模拟二进制交叉(simulated binary crossover,SBX)策略实现全局搜索与局部搜索的平衡。通过与其他六种多目标进化算法在10个测试函数上的性能比较,结果表明MODE-SS算法的整体性能要好于其他所比较算法。最后,将MODE-SS算法用于求解海铁联运能耗优化问题,所得结果能够为决策者提供多种可行方案。  相似文献   

19.
针对目前采用差分进化算法求解防空导弹火力分配问题需要人工确定惩罚系数,从而增大模型建立复杂性的问题。采用一种处理约束条件的改进差分进化算法求解该问题;该方法在解是否可行的基础上采用三种选择准则用于搜索可行解区域,并增加了一个整数变量用于保存整数解。实例结果表明,与采用惩罚函数的方法相比,该方法在同等的求解效率下,能够获得较好的最优值。由于该方法不用人为确定惩罚系数,减少了模型的确定难度和时间,可用于求解火力分配问题。  相似文献   

20.
人工神经网络的结构设计没有系统的规律可遵循,而常用的基于梯度的神经网络参数优化又易陷入局部最优解。针对BP人工神经网络所存在的缺陷,结合差异演化算法,提出了实数编码的DE-BP神经网络预测模型。利用税收预测的实例验证了算法的有效性,取得了令人满意的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号