首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Culture conditions for human embryonic stem cells   总被引:1,自引:0,他引:1  
Human embryonic stem cell (hESC) lines have been derived and cultured in variable conditions. The idea behind derivation of hESC lines is to use them in human cell transplantation after differentiation, but already now these cells are widely used for research purposes. Despite similarities among the established lines, important differences have been reported between them, and it has been difficult to compare the results obtained using different lines. Recent optimization of hESC culture conditions has moved from cultures on mouse embryonic fibroblasts (MEFs) in fetal bovine serum-containing medium towards feeder-free culture methods using more defined animal substance-free cultures. The aim has been to establish robust and cost-effective systems for culturing these cells and eliminate the risk of infection transmitted by animal pathogens and immunoreactions caused by animal substances in cell cultures before clinical treatment. It is important to take these modifications into account when carrying out research using these cells. It is known that culture conditions influence gene expression and, hence, probably many properties of the cells. Optimization and standardization of culture methods is needed for research as well as for clinical purposes.  相似文献   

2.
The recently developed technique of establishing embryonic stem (ES) cell lines from single blastomeres (BTMs) of early mouse and human embryos has created significant interest in this source of ES cells. However, sister BTMs of an early embryo might not have equal competence for the development of different lineages or the derivation of ES cells. Therefore, single BTMs from two- and four-cell embryos of outbred mice were individually placed in sequential cultures to enhance the formation of the inner cell mass (ICM) and the establishment of embryonic outgrowth. The outgrowths were then used for the derivation of ES cell lines. Based on the expression of ICM (Sox2) and trophectoderm (Cdx2) markers, it was determined that ICM marker was lacking in blastocysts derived from 12% of BTMs from two-cell stage and 20% from four-cell stage. Four ES cell lines (5.6%; 4/72) were established ater culture of single BTMs from two-cell embryos, and their pluripotency was demonstrated by their differentiation into neuronal cell types. Our results demonstrate that sister BTMs of an early embryo are not equally competent for ICM marker expression. However, we demonstrated the feasibility of establishing ES cells from a single BTM of outbred mice.  相似文献   

3.
Mouse embryonic stem (ES) cells, which are continuously growing cell lines, have a pluripotent ability to differentiate into various cell lineages in vitro including neurons. We investigated the effects of chick dorsal root ganglion (DRG) conditioned medium (CM) and nerve growth factor (NGF) on the directed differentiation of ES cells into neurons. Because DRGs from 8-day-old chick embryos are often used in bioassays of neurotrophic factors, DRGs may release soluble factors that can induce ES cell differentiation into neurons in a culture broth. When cultivated in a Dulbecco's modified Eagle's medium (DMEM)/F-12K medium containing DRG-CM or NGF, the ES cell colonies clearly showed neurite outgrowths. Of particular significance, the immunofluorescence analysis of ES cell colonies using an anti-betaIII-tubulin antibody indicated that the addition of DRG-CM effectively promoted the differentiation of ES cells into neurons. We confirmed the effect of DRG-CM addition on ES cell differentiation into neurons via neuronal stem cells by the immunofluorescence analysis of ES cell colonies. Thus, DRG-CM appeared to effectively promote ES cell differentiation into neurons.  相似文献   

4.
Conventionally, embryonic stem (ES) cells are cultured on a cell layer of mouse embryonic fibroblasts (MEFs) as feeder cells to support undifferentiated growth of ES cells. In this study, cell–cell interactions between mouse ES and feeder cells were artificially engineered via an epithelial cell adhesion molecule, E-cadherin, whose expression is considerable in ES cells. Mouse mesenchymal STO and NIH3T3 cells that were genetically engineered to express E-cadherin were used in ES cell cultures as feeder cells. ES cells cultured on the E-cadherin-expressing feeder cells maintained the expression of stem cell markers, alkaline phosphatase (AP), Oct3/4, Nanog and Sox2, and the efficiency of AP-positive colony formation was comparable to MEFs, and much better than parental STO and NIH3T3 cells. Furthermore, ES cells maintained on the E-cadherin-expressing feeder cells possessed the ability to differentiate into the three germ layers both in vitro and in vivo. The results indicated that E-cadherin expression in feeder cells could improve the performance of feeder cells, which may be further applicable to create new artificial feeder cell lines.  相似文献   

5.
Mammalian somatic cell cloning requires factors specific to the oocyte for reprogramming to succeed. This does not exclude that reprogramming continues during the zygote and cleavage stages. The capacity or role of zygotic and cleavage stages to reprogram somatic cell nuclei is difficult to assess due to the limited development of somatic cell nuclei transplanted into cytoplasts of these stages. Alternatively, tetraploid embryos have been used to study reprogramming and can be assessed for their contribution to extra-embryonic lineages. When mouse cumulus cell nuclei transgenic for Oct4-green fluorescent protein (GFP) were injected into intact two- and four-cell stage blastomeres, manipulated embryos developed into blastocysts with expression of Oct4-GFP as observed in embryos produced by nuclear transfer into metaphase II oocytes. However, only the latter contributed to extra-embryonic tissues in day 10.5 conceptuses, with the exclusion of the somatic genome in cells originating from transfer into blastomeres already at 5.5 days post conception. Somatic nuclei transferred into cleavage stage blastomeres reinitiated expression of an embyronic-specific transgene, but lacked the extent of reprogramming required for contribution to postimplantation development, even when complemented by an embryonic genome.  相似文献   

6.
7.
Epigenetic states of embryonic stem (ES) cells are easily altered by long-term cultivation and lose their developmental potential. To rescue this reduced developmental capacity, nuclear transfer (NT) of ES cells was carried out, and original ES and ES cells from cloned blastocysts (ntES) cells established after NT were compared with in vitro differentiation ability and developmental potential by embryoid body formation and tetraploid aggregation respectively. In the establishment of ntES cell lines, the oocytes fused with the ES cell were activated, and further cultured to cloned blastocysts. When in vitro differentiation ability was examined between original and ntES cell lines derived from ES cells with extensive passages (ES-ep), the day of appearance of simple embryoid body, cystic embryoid body, and spontaneous beating was almost similar. The developmental rates of ES-ep cells, that aggregated with tetraploid embryos to term, ranged from 3 to 6%. Moreover, the majority of live pups died soon after birth. In the ntES cell lines derived from ES-ep cells, developmental rates ranged from 0 to 5%. Those pups also died soon after birth, similar to the ES-ep-derived pups. These results suggest that profound epigenetic modifications of ES cells were retained in the re-established cell lines by NT.  相似文献   

8.
9.
Derivation, growth and applications of human embryonic stem cells   总被引:9,自引:0,他引:9  
Human embryonic stem (hES) cells are pluripotent cells derived from the inner cell mass cells of blastocysts with the potential to maintain an undifferentiated state indefinitely. Fully characterised hES cell lines express typical stem cell markers, possess high levels of telomerase activity, show normal karyotype and have the potential to differentiate into numerous cell types under in vitro and in vivo conditions. Therefore, hES cells are potentially valuable for the development of cell transplantation therapies for the treatment of various human diseases. However, there are a number of factors which may limit the medical application of hES cells: (a) continuous culture of hES cells in an undifferentiated state requires the presence of feeder layers and animal-based ingredients which incurs a risk of cross-transfer of pathogens; (b) hES cells demonstrate high genomic instability and non-predictable differentiation after long-term growth; and (c) differentiated hES cells express molecules which could cause immune rejection. In this review we summarise recent progress in the derivation and growth of undifferentiated hES cells and their differentiated progeny, and the problems associated with these techniques. We also examine the potential use of the therapeutic cloning technique to derive isogenic hES cells.  相似文献   

10.
We previously showed that increasing the cell number of host tetraploid (4n) embryos by aggregating multiple 4n embryos at two to four-cell stages can improve the birthrate of mice from embryonic stem cells (ES mice). In the present study, we assessed whether in vitro aged blastocysts (e.g., E4.5 or E5.5), where their cell number also increased with development, can be used as hosts for generating ES mice. As expected, the cell number of in vitro aged 4n blastocysts increased with development, i.e., 26.5+/-2.4, 49.6+/-8.4, and 84.9+/-20.9 cells for E3.5, E4.5, and E5.5 respectively. Three independent ES cell lines were injected into 4n aged blastocysts, and their developmental ability was compared with that of E3.5 4n blastocysts commonly used for this procedure. We found that the birthrate of ES mice derived from E4.5 blastocysts were comparable with those of mice generated from E3.5 blastocysts. On the other hand, the birthrates decreased when E5.5 blastocysts were used. These results suggest that not only the cell number but also developmental age is important for producing ES mice. We also discuss a comparison of the present findings with those of our previous study, where ES mice were generated using an aggregation method employing the same ES cell lines.  相似文献   

11.
In this paper, we report a novel method for delivering genes into chloroplasts of tobacco cells using laser microablation. The plasmid pLD200-GFP was introduced into chloroplasts of Nicotiana tabacum cv. Xanthi guard cells and transient GFP expression was detected in the chloroplasts after 2-3 d of incubation. The technique uses an argon fluoride (ArF) excimer laser to perforate the cell surface in a 4 mum(2) area in the presence of plasmid coated gold microparticles. Pretreatment of guard cells to promote stomatal closure prior to laser ablation resulted in a significant increase in the survival rate of cells and a transient expression rate of 2-3% in trial number basis was archived. Our method has unique advantages such as avoiding laborious pretreatments that adversely affect cell viability and specific delivery of transgenes into a desired cell in complex leaf tissue. This technique is a potential tool for cell specific transient gene expression studies for elucidation of gene regulation and expression.  相似文献   

12.
We describe the quantitative monitoring of TATA-binding protein (TBP) localization and expression in living Saccharomyces cerevisiae cells. We replaced the endogenous TBP with a green fluorescent protein (GFP) · TBP fusion, which was imaged quantitatively by laser scanning confocal microscopy (LSCM). When GFP · TBP expression was altered by using various promoters, the levels measured by LSCM correlated well with the levels determined by immunoblot of whole cell extract protein. These results show that GFP · TBP imaging not only offers a method of measurement equivalent to a more conventional technique but also provides real-time quantitation in living cells and subcellular localization information. Time-lapse confocal imaging of GFP · TBP in mitotic yeast cells revealed that it remains localized to the nucleus and displays an asymmetric distribution (1:0·7) between mother and daughter cells. Based on this and data from a mutant which underexpresses GFP · TBP, we suggest that intracellular levels of TBP are near rate-limiting for growth and viability. © 1998 John Wiley & Sons, Ltd.  相似文献   

13.
Until recently, precise modification of the animal genome by gene targeting was restricted to the mouse because germline competent embryonic stem cells are not available in any other mammalian species. Nuclear transfer (NT) technology now provides an alternative route for cell-based transgenesis in domestic species, offering new opportunities in genetic modification. Livestock that produce human therapeutic proteins in their milk, have organs suitable for xenotransplantation, or that could provide resistance to diseases such as spongiform encephalopathies have been produced by NT from engineered, cultured somatic cells. However, improvements in the efficiency of somatic cell gene targeting and a greater understanding of the reprogramming events that occur during NT are required for the routine application of what is currently an inefficient process. The ability to reprogramme and genetically manipulate cells will also be crucial for full exploitation of human embryonic stem (hES) cells, which offer unparalleled opportunities in human health and biotechnology. Particularly pertinent are directed differentiation of hES lines to specific cell lineages, production of cells that evade the patient's immune system and ensuring the safety of ensuing transplants. This review will discuss some of the successes, applications and challenges facing gene targeting in livestock and hES cells.  相似文献   

14.
Although putative horse embryonic stem (ES)-like cell lines have been obtained recently from in vivo-derived embryos, it is currently not known whether it is possible to obtain ES cell (ESC) lines from somatic cell nuclear transfer (SCNT) and parthenogenetic (PA) embryos. Our aim is to establish culture conditions for the derivation of autologous ESC lines for cell therapy studies in an equine model. Our results indicate that both the use of early-stage blastocysts with a clearly visible inner cell mass (ICM) and the use of pronase to dissect the ICM allow the derivation of a higher proportion of primary ICM outgrowths from PA and SCNT embryos. Primary ICM outgrowths express the molecular markers of pluripotency POU class 5 homeobox 1 (POU5F1) and (sex determining region-Y)-box2 (SOX2), and in some cases, NANOG. Cells obtained after the passages of PA primary ICM outgrowths display alkaline phosphatase (AP) activity and POU5F1, SOX2, caudal-related homeobox-2 (CDX2) and eomesodermin (EOMES) expression, but may lose NANOG. Cystic embryoid body-like structures expressing POU5F1, CDX2 and EOMES were produced from these cells. Immunohistochemical analysis of equine embryos reveals the presence of POU5F1 in trophectoderm, primitive endoderm and ICM. These results suggest that cells obtained after passages of primary ICM outgrowths are positive for trophoblast stem cell markers while expressing POU5F1 and displaying AP activity. Therefore, these cells most likely represent trophoblast cells rather than true ESCs. This study represents an important first step towards the production of autologous equine ESCs for pre-clinical cell therapy studies on large animal models.  相似文献   

15.
Embryonic stem (ES) cells are the source of all embryonic germ layer tissues. Oct-4 is essential for their pluripotency. Since in vitro culture may influence Oct-4 expression, we investigated to what extent blastocysts cultured in vitro from the zygote stage are capable of expressing Oct-4 and generating ES cell lines. We compared in vivo with in vitro derived blastocysts from B6D2 mice with regard to Oct-4 expression in inner cell mass (ICM) outgrowths and blastocysts. ES cells were characterized by immunostaining for alkaline phosphatase (ALP), stage-specific embryonic antigen-1 (SSEA-1) and Oct-4. Embryoid bodies were made to evaluate the ES cells' differentiation potential. ICM outgrowths were immunostained for Oct-4 after 6 days in culture. A quantitative real-time PCR assay was performed on individual blastocysts. Of the in vitro derived blastocysts, 17% gave rise to ES cells vs 38% of the in vivo blastocysts. Six-day old outgrowths from in vivo developed blastocysts expressed Oct-4 in 55% of the cases vs 31% of the in vitro derived blastocysts. The amount of Oct-4 mRNA was significantly higher for freshly collected in vivo blastocysts compared to in vitro cultured blastocysts. In vitro cultured mouse blastocysts retain the capacity to express Oct-4 and to generate ES cells, be it to a lower level than in vivo blastocysts.  相似文献   

16.
Developmental ability of cloned embryos from neural stem cells   总被引:2,自引:0,他引:2  
The success rate is generally higher when cloning mice from embryonic stem (ES) cell nuclei than from somatic cell nuclei, suggesting that the embryonic nature or the undifferentiated state of the donor cell increases cloning efficiency. We assessed the developmental ability of cloned embryos derived from cultured neural stem cell (NSC) nuclei and compared the success rate with that of embryos cloned from other donor cells such as differentiated NSCs, cumulus cells, Sertoli cells and ES cells in the mouse. The transfer of two-cell cloned embryos derived from cultured NSC nuclei into surrogate mothers produced five live cloned mice. However, the success rate (0.5%) was higher in embryos cloned from cultured NSC nuclei than from differentiated NSCs (0%), but lower than that obtained by cloning mice from other cell nuclei (2.2-3.5%). Although the in vitro developmental potential to the two-cell stage of the cloned embryos derived from NSC nuclei (73%) was similar to that of the cloned embryos derived from other somatic cell nuclei (e.g., 85% in Sertoli cells and 75% in cumulus cells), the developmental rate to the morula-blastocyst stage was only 7%. This rate is remarkably lower than that produced from other somatic cells (e.g., 50% in Sertoli cells and 54% in cumulus cells). These results indicate that the undifferentiated state of neural cells does not enhance the cloning efficiency in mice and that the arrest point for in vitro development of cloned embryos depends on the donor cell type.  相似文献   

17.
18.
Mouse embryonic stem (ES) cells have the pluripotent ability to differentiate in vitro into various cell lineages, including neurons. Adding chick dorsal root ganglion (DRG) conditioned medium (CM) to the culture medium promotes the differentiation of ES cells into neurons. We determined the types of neurons that differentiate from ES cells. The addition of DRG-CM caused nearly half of all ES cells on the periphery of the colony sphere to differentiate into neurons. Immunofluorescence analysis showed that the neurons that differentiated from ES cells were mainly motor, GABAergic, serotonergic, and cholinergic neurons. Of particular note, flow cytometry showed that approximately 50% of betaIII-tubulin-positive neurons were motor neurons. This indicates that DRG-CM induces ES cells to differentiate into motor neurons as target of DRG neurons (sensory neurons).  相似文献   

19.
A rapid and simple selection method of high-yield cells has been desired to establish highly productive cell lines for useful secondary metabolites. For this purpose, a new attempt was made to partition cultured plant cells in a poly(ethylene glycol)-dextran aqueous two-phase system (ATPS). The applicability of the ATPS in partitioning cultured strawberry cells (designated FAW) was investigated. The result of single-step partitioning in the ATPS supplemented with 0.4 mmol/kg lithium sulfate showed that FAW cells cultivated for 7 d under light-irradiation were separated into two cell populations with significantly different anthocyanin content. Additionally, the analysis technique of microscopic cell images showed that cells accumulating a high level of anthocyanin were partitioned completely into the bottom phase in a partitioning experiment of FAW cells cultivated for 10 d under light-irradiation in the ATPS supplemented with 1.8 mmol/kg potassium phosphate buffer. These results indicated that cell partitioning in ATPS increased the intracellular anthocyanin content and that the cultured strawberry cell population was heterogeneous in terms of cell surface properties. This is the first report of partitioning based on the heterogeneity of the cell surface properties correlated with the intracellular secondary metabolism in cultured plant cells. Our results also suggested that the ATPS was appropriate as a large-scale method for selecting useful cell lines among the cultured plant cells.  相似文献   

20.
A system has been developed for the quantitative analysis of gene expression within individual Candida albicans cells in infected tissue. The system is based on the plasmid pGFP, which contains the codon-optimized yeast enhanced green fluorescent protein (yEGFP; Cormack et al., 1997) cloned between a basal CaADH1 promoter and the ScCYC1 terminator on an integrating vector. Promoters were inserted into pGFP and GFP levels measured in individual cells by quantitative fluorescence microscopy. Analysis of pPCK1-GFP and pMET3-GFP fusions revealed that GFP folds rapidly following gene induction, and is turned over rapidly following gene repression. Hence, single cell fluorescence measurements are likely to reflect ongoing gene expression levels with reasonable accuracy. pACT1-GFP expression levels were relatively constant during growth of C. albicans in both yeast and hyphal forms, and during growth in vivo in the mouse model of systemic infection. Therefore, pACT1-GFP provides a useful control for this quantitative GFP-based system in future analyses of C. albicans molecular responses during fungal infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号