首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A next-generation optical regional access network   总被引:2,自引:0,他引:2  
We describe an optical regional access network which combines electronic IP routing with intelligent networking functionality of the optical WDM layer. The optical WDM layer provides such networking functions as network logical topology reconfiguration, optical flow switching to offload traffic and bypass IP routers, wavelength routing of signals, protection switching and restoration in the optical domain, and flexible network service provisioning by reconfigurable wavelength connectivity. We discuss key enabling technologies for the WDM layer and describe their limitations. The symbiosis of electronic and optical WDM networking functions also allows support for heterogeneous format traffic and will enable efficient gigabit-per-second user access in next-generation Internet networks  相似文献   

2.
We consider an IP-over-WDM network in which network nodes employ optical crossconnects and IP routers. Nodes are connected by fibers to form a mesh topology. Any two IP routers in this network can be connected together by an all-optical wavelength-division multiplexing (WDM) channel, called a lightpath, and the collection of lightpaths that are set up form a virtual topology. In this paper, we concentrate on single fiber failures, since they are the predominant form of failures in optical networks. Since each lightpath is expected to operate at a rate of few gigabits per second, a fiber failure can cause a significant loss of bandwidth and revenue. Thus, the network designer must provide a fault-management technique that combats fiber failures. We consider two fault-management techniques in an IP-over-WDM network: (1) provide protection at the WDM layer (i.e., set up a backup lightpath for every primary lightpath) or (2) provide restoration at the IP layer (i.e., overprovision the network so that after a fiber failure, the network should still be able to carry all the traffic it was carrying before the fiber failure). We formulate these fault-management problems mathematically, develop heuristics to find efficient solutions in typical networks, and analyze their characteristics (e.g., maximum guaranteed network capacity in the event of a fiber failure and the recovery time) relative to each other  相似文献   

3.
A detailed analytical traffic model for all-optical wavelength division multiplexing (WDM) photonic packet-switched networks is presented and the requirements for buffer size and link dimensions are analyzed. This paper shows that due to the topology, packets may generate traffic bottlenecks produced by a tendency of the routing scheme to send packets with different destinations through preferred paths. This effect increases the traffic load and, hence, the probability of blocking at the output links of specific routers in the network and, therefore, a large buffer depth or an increment in the number of fibers per link is required. Three router architectures are analyzed and it is shown that WDM all-optical router architectures with shared contention resolution resources are the best candidates to reduce hardware volume and cost of all-optical networks. It is shown that routers with a bank of completely shared wavelength converters (WCs) require a fraction of WCs compared to router architectures that use a WC per wavelength. This fraction depends on the location of the router, the network topology, and the traffic load in the network. However, in general terms, about 50% to 90% of WCs can be saved by architectures with shared wavelength-conversion resources. Also, it is shown that limited wavelength conversion degrees d=8 and d=10 in packet-switching routers with 16 and 32 wavelengths give the same probability of packet loss performance as full wavelength conversion  相似文献   

4.
The author proposes, for future wavelength-division-multiplexing (WDM) optical networks, new wavelength routers with reduced losses and improved wavelength response. This paper focuses on the most general type of wavelength router, the N/spl times/N router. This device is particularly attractive in a metropolitan network, where a star arrangement based on the N/spl times/N router allows the network configuration (the wavelength path of each signal) to be varied and managed in a simple fashion. The N/spl times/N router has been shown to be suitable for both packet and circuit switching. In particular, ultrahigh-capacity IP routers have been demonstrated by using fast tunable lasers and burst mode receivers.  相似文献   

5.
光网络的发展与展望   总被引:1,自引:0,他引:1  
首先简要介绍了光网络的基本概念,然后阐述了光传送网的主要优势,接下来分别论述了IP业务量对传送网结构的影响、从点到点WDM向光联网演进的必要性和演进的步骤以及全光光交叉连接设备的现状与发展,最后阐述了光传送网络向ASON演进的必然趋势.  相似文献   

6.
Because pure electrical routers with their bandwidth limitations can hardly keep up with the tremendous traffic growth in the Internet, optical routers based on various optical switching techniques including optical wavelength switching (OWS), optical burst switching (OBS), and optical packet switching (OPS) have been suggested to cope with this problem. However, because OBS and OPS are both in their early experimental phase and OWS only provides coarse granularity switching, a hybrid-switching optical router with combined OWS and electrical packet switching is a necessity in order to accommodate the entire multi-granularity traffic with multi-service requirements in a cost-effective manner. Its coordination capability of optical circuit switching and electrical packet switching enables efficient/intelligent usage of network resources. In this paper, we first review research and developments of such IP routers employing optical switching/interconnection techniques and examine how these techniques can be used inside routers to scale node capacity and to improve optical Internet performance. We also present and study the performance of a terabit optical router with an optical-electrical hybrid-switching fabric. The node architecture is based on the idea of IP over WDM integration with Generalized Multi-Protocol Label Switching (GMPLS). The network-level performance evaluations show that the proposed hybrid-switching optical router is a cost-effective solution for building the next generation GMPLS-based multi-granularity optical Internet.  相似文献   

7.
8.
波分复用系统加密技术研究   总被引:2,自引:0,他引:2  
波分复用系统是将多个独立的光波耦合复用到一根光纤中传输,从而更有效地提供带宽,让IP、ATM、SDH等数据通过统一的光纤层传输的系统。波分复用系统在改善网络性能的同时,也给网络的安全带来了一定的隐患。文中针对波分复用(WDM)自身特点及所面临的安全威胁,提出基于WDM的加密技术研究思路,为实现对WDM/OTN/ASON网络综合数据业务的安全保密奠定了基础。  相似文献   

9.
Chiu  A.L. Strand  J. 《IEEE network》2003,17(2):38-42
The optical layer can provide its IP clients with rapid and efficient restoration for link failures; however, its inability to protect against router failures erodes its attractiveness. Here, we propose a joint IP/optical restoration mechanism suitable for IP offices with a minimum of two backbone routers and an optical cross-connect. The OXC is used to reterminate OC-48/OC-192 links from a failed backbone router to its mate. The entire interoffice portion of the reterminated link is reused, thus minimizing the amount of additional link capacity required to protect against router failures. A similar approach applicable when there are tunable transceivers but no OXC is also described.  相似文献   

10.
We consider the realization of traffic-oblivious routing in IP-over-optical networks where routers are interconnected over a switched optical backbone. The traffic-oblivious routing we consider is a scheme where incoming traffic is first distributed in a preset manner to a set of intermediate nodes. The traffic is then routed from the intermediate nodes to the final destination. This splitting of the routing into two phases simplifies network configuration significantly. In implementing this scheme, the first and second phase paths are realized at the optical layer with router packet grooming at a single intermediate node only. Given this unreliability of routers, we consider how two-phase routing in IP-over-optical networks can be made resilient against router node failures. We propose two different schemes for provisioning the optical layer to handle router node failures-one that is failure node independent and static, and the other that is failure node dependent and dynamic We develop linear programming formulations for both schemes and a fast combinatorial algorithm for the second scheme so as to maximize network throughput. In each case, we determine (i) the optimal distribution of traffic to various intermediate routers for both normal (no-failure) and failure conditions, and (ii) provisioning of optical layer circuits to provide the needed inter-router links. We evaluate the performance of the two router failure protection schemes and compare it with that of unprotected routing  相似文献   

11.
A new approach for network survivability problem in Intemet protocol (IP) over wavelength division multiplexing (WDM) optical network is proposed to enhance the IP layer restorability under physical link failure through logical topology reconfiguration. More specifically, after traffic arrival and departure, reconfiguring the logical topology correspondingly is helpful to minimize the traffic disruption after physical link failure. So, in this paper, this problem is proposed for first time and formulated as an integer linear programming (ILP) problem. And then, two heuristic algorithms are proposed. The performance of proposed algorithms have been evaluated through simulations, and the results show that reconfiguring the logical topology dynamically could achieve more than 20% improvement of the restorability of traffic in IP layer, but with acceptable resource cost.  相似文献   

12.
We introduce an all-optical WDM packet communication network that performs wavelength bypassing at the routers. Packets that arrive at a wavelength (optical cross-connect) router at designated wavelengths are switched by the router without having their headers examined. Thus, the processing element of the router is bypassed by such packets. For packet traffic that uses wavelengths that do not bypass a switch, the headers of such packets are examined to determine if this switch is the destination for the flow. If latter is the case, the packet is removed. Otherwise, the packet is switched to a pre-determined output without incurring (network internal) queueing delays. We study a ring network with routers that employ such a WDM bypassing scheme. We present methods to construct wavelength graphs that define the bypassing pattern employed by the routers to guide the traffic flows distributed at each given wavelength. Performance is measured in terms of the network throughput and the average processing path length (i.e., the average number of switches not being bypassed). For a fixed total processing capacity, we show that a WDM bypassing ring network provides a higher throughput level than that exhibited by a non-bypassing ring network, using the same value of total link capacity. By using WDM bypassing, the average processing path length (and thus the packet latency) is reduced. We study a multitude of network loading configurations, corresponding to distinct traffic matrices and client-server scenarios. Higher throughput levels are obtained for network configurations driven by non-uniform traffic matrices. The demonstrated advantages of WDM bypassing methods shown here for WDM ring networks are also applicable to more general network topological layouts.  相似文献   

13.
In this article traffic-engineering issues regarding network survivability, traffic grooming, impairment-aware routing, virtual-topology engineering, and coordination among multiple layers of network architecture will be reviewed for next-generation optical networks based on Wavelength-Division Multiplexing (WDM). Due to the recent progress and development of WDM technology, increasing traffic demands can be readily accommodated in the next-generation optical networks. In spite of the huge amount of capacity (e.g., OC-192) provided by a WDM channel, enhanced network services and network performance improvement can only be achieved with efficient traffic-engineering mechanisms. The fault-tolerant function is essential in order to provide seamless services to users by protecting their traffic against failures in the optical network because many connections can be carried on a fiber. Because the capacity of a WDM channel is very large, its bandwidth may not be efficiently utilized by a single connection. Hence, low-rate user connections need to be efficiently aggregated through the traffic-grooming scheme. An intelligent routing algorithm is especially necessary in the optical network where signal impairments due to device imperfections might degrade the signal quality. In addition, the virtual network connectivity (topology) should be flexibly maintained such that dynamic changes to the traffic demands can be easily absorbed, which can be implemented by the virtualtopology engineering method in a WDM network. As the dominant usage of Internet Protocol (IP) of the Internet is expected to reside directly above the WDM layer in the future network, the coordinated trafficengineering scheme should be deliberately designed for the multi-layer network by judiciously choosing where to put many overlapping functions in the different network layers.  相似文献   

14.
In this paper, we have developed an integrated online algorithm for dynamic routing of bandwidth guaranteed label switched paths (LSPs) in IP-over-WDM optical networks. Traditionally, routing at an upper layer (e.g., IP layer) is independent of wavelength routing at the optical layer. Wavelength routing at the optical layer sets up a quasi-static logical topology which is then used at the IP layer for IP routing. The coarse-grain wavelength channels and the pre-determined virtual topologies with respect to some a priori assumed traffic distribution are barriers to efficient resource use and inflexible to changing traffic. We take into account the combined knowledge of resource and topology information at both IP and optical layers. With this added knowledge, an integrated routing approach may extract better network efficiencies, be more robust to changing traffic patterns at the IP layer than schemes that either use dynamic routing information at the IP layer or use a static wavelength topology only. LSP set-up requests are represented in terms of a pair of ingress and egress routers as well as its bandwidth requirement, and arrive one-by-one. There is no a priori knowledge regarding the arrivals and characteristics of future LSP set-up requests. Our proposed algorithm considers not only the importance of critical links, but also their relative importance to routing potential future LSP set-up requests by characterizing their normalized bandwidth contribution to routing future LSP requests with bandwidth requirements. Moreover, link residual bandwidth information that captures the link's capability of routing future LSPs is also incorporated into route calculation. Extensive simulation was conducted to study the performance of our proposed algorithm and to compare it with some existing ones, such as the integrated minimum hop routing algorithm and the maximum open capacity routing algorithm. Simulation results show that our proposed algorithm performs better than both routing algorithms in terms of the number of LSP set-up requests rejected and the total available bandwidth between router pairs.  相似文献   

15.
Hot‐potato routing is a border gateway protocol policy that selects the ‘closest’ egress router in terms of interior gateway protocol cost. This policy imposes inherent interactions between intra‐AS (Autonomous System) and inter‐AS traffic engineering. In light of this observation, we present a hybrid intra‐AS and inter‐AS traffic engineering scheme named egress selection based upon hot potato routing. This scheme involves link weight optimization, which can not only minimize the time that IP (Internet Protocol) packets travel across the network by assigning specified egress router but also balance the load among the internal links of the transit network. Egress selection based upon hot potato routing also incorporates multi‐topology routing technique to address the problem that one set of link weights might not guarantee specified egress routers. Accordingly, we formulate the link weights optimization problem using multi‐topology routing as a mixed integer linear programming model. And we present a new heuristic algorithm to make the problem tractable. Numerical results show that only a few topologies are needed to guarantee specified egress router, and maximum link utilization is also reduced. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
A session tree based mechanism provides an efficient method to avoid well-known feedback implosion. However, it is not easy to configure an efficient session tree for IP multicast because it does not provide any explicit membership and routing topology information to the upper layer protocol. Incongruity between a session tree built on the transport layer and the corresponding routing tree on the network layer would incur large cost to handle control messages. This problem can be solved if a router that knows the information of routing topology can support the configuration of a session tree. Thus this letter proposed a router-assistant mechanism which minimizes the change of router functions and allows the routers to assist in providing a reliable multicast transport service  相似文献   

17.
An architecture for IP over WDM using time-division switching   总被引:1,自引:0,他引:1  
This paper proposes an architecture for routing Internet protocol (IP) packets directly on optical networks. The use of label switching is assumed in the IP routers, while a new routing architecture is introduced to transport IP packets across an optical backbone network. The architecture is based on a two-tier multiplexing approach with wavelength division multiplexing (WDM) addressing the number of regional exchanges and time-division switching communicating among the hubs. Such an architecture not only has the advantages of simple network management and high efficiency with low latency; it also is scalable by addition of regional exchanges, hubs, and fibers  相似文献   

18.
A change in network topology triggers the re-convergence process of routing protocols. The re-convergence time of current routing protocols (e.g. OSPF) is constrained by the possibility of having transient loops due to the independent calculation of shortest paths between routers affected by a network failure. Several IP Fast-ReRoute (IPFRR) schemes have been developed to pro-actively calculate and install alternate forwarding entries almost instantaneously once a topology update message is received, without causing temporary micro-loops. The IPFRR scheme which has been used most extensively so far makes use of Loop-Free Alternates (LFA). While these are easy to configure, LFAs still require manual configuration, and the resulting ratio of covered link failures is only about 60 to 70 percent. This paper presents a logical extension of the Loop-Free Alternate concept, proposes a self-configuring scheme to populate the corresponding alternate entries, and evaluates the performance of the scheme with respect to coverage, configuration time and path length in a simulation environment.  相似文献   

19.
We consider the problem of designing a logical optical network topology for a given physical topology (or fiber layout) and a given traffic demand matrix between the end-users. Traffic between the end-users is carried in a packet-switched form and the objective of our logical topology design is to minimize the maximum congestion on the logical connections in the logical topology. The logical connections are realized by wavelength continuous paths or lightpaths between end-users and they are routed via wavelength-selective routers. Note that a topology with lower maximum link congestion will allow its traffic demand matrix to be scaled up by a larger factor. In the logical topology each node is equipped with a limited number of optical transceivers, hence logical connections cannot be set up between every pair of nodes. In this paper we present an improved lower bound for maximum congestion on any link In the logical topology. The bound is shown to be up to 50% higher than the existing ones. An analytical model for obtaining the maximum and average logical connection loads for a given logical network and traffic demand matrix is also formulated, and it has been confirmed via simulation. Finally, two heuristic algorithms for constructing a logical topology that reduces maximum logical connection congestion are presented  相似文献   

20.
Benefits of GMPLS for multilayer recovery   总被引:1,自引:0,他引:1  
IP-based backbone networks are gradually moving towards a network model consisting of high-speed routers that are flexibly interconnected by lightpaths set up by an optical transport network consisting of WDM links and optical cross-connects. Recovery mechanisms at both network layers are crucial to reach the high availability requirements of critical services. In such a model, the GMPLS protocol suite can provide a distributed control plane that can be used to deliver rapid and dynamic circuit provisioning of end-to-end optical lightpaths. This article explains that it can be very beneficial to exploit this functionality to enhance the cost effectiveness of multilayer recovery significantly. Several practical case studies illustrate this concept and highlight the opportunities and challenges to be faced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号