首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Signal loss and noise accumulation can cause fading in optical buffers implemented by fiber delay lines (FDLs). Optical packets that excessively recirculate through FDLs are easily dropped from their routing paths. Therefore, analytical models and packet scheduling schemes require additional considerations for FDL buffers. This work proposes an analytical model for all-optical packet switching networks with finite FDL buffers and a general class of scheduling schemes including many basic scheduling schemes. We intend to minimize the packet loss probability by ranking packets to achieve an optimal balance between latency and residual lifetime in the general class of scheduling schemes. The analytical model is based on a non-homogeneous Markovian analysis to study the effects of various scheduling schemes on packet loss probability and average latency. Analytical results show how various network parameters affect the optimal balance, and illustrate how properly balancing latency and residual distance can significantly improve network performance.  相似文献   

2.
In all-optical packet switching, packets may arrive at an optical switch in an uncoordinated fashion. To prevent packet loss in the switch, fiber delay lines (FDLs) are used as optical buffers to store optical packets. However, assigning FDLs to the arrival packets to achieve high throughput, low delay, and low loss rate is not a trivial task. In the authors' companion paper, several efficient scheduling algorithms were proposed for single-stage shared-FDL optical packet switches (OPSs). To further enhance the switch's scalability, this work was extended to a multistage case. In this paper, two scheduling algorithms are proposed: 1) sequential FDL assignment and 2) multicell FDL assignment algorithms for a three-stage optical Clos-Network switch (OCNS). The paper shows by simulation that a three-stage OCNS with these FDL assignment algorithms can achieve satisfactory performance.  相似文献   

3.
A major challenge in packet‐based optical networks is packet contention, which occurs when two or more packets are heading to the same output at the same time. To resolve contention in the optical domain, a fundamental approach is fiber delay‐line (FDL) buffering, in which packets can be delayed for a fixed amount of time. In the literature, the performance of FDL buffering has been studied extensively. However, most existing works are based on an assumption that there is only one fiber per link in the network. In this paper, we address the architecture and performance of FDL buffers in packet‐based asynchronous multifiber optical networks (PAMFONET), in which each link in the network may consist of multiple optical fibers. We propose a framework for FDL buffers in PAMFONET, in which we provide three essential architectures and corresponding packet scheduling policies. Extensive simulation results show that, with appropriate settings, the same number of FDLs can lead to better performance in multifiber networks than in single‐fiber networks. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
In all-optical packet switching, packets may arrive at an optical switch in an uncoordinated fashion. When contention occurs, fiber delay lines (FDLs) are needed to delay (buffer) the packets that have lost the contention to some future time slots for the desired output ports. There have been several optical-buffered switch architectures and FDL assignment algorithms proposed in the literature. However, most of them either have high implementation complexity or fail to schedule in advance departure time for the delayed packets. This paper studies the packet scheduling algorithms for the single-stage shared-FDL optical packet switch. Three new FDL assignment algorithms are proposed, namely sequential FDL assignment (SEFA), multicell FDL assignment (MUFA), and parallel iterative FDL assignment (PIFA) algorithms for the switch. The proposed algorithms can make FDLs and output-port reservation so as to schedule departure time for packets. Owing to FDL and/or output-port conflicts, the packets that fail to be scheduled are discarded before entering the switch so that they do not occupy any FDL resources. It is shown by simulation that with these algorithms, the optical-buffered switch can achieve a loss rate of /spl sim/10/sup -7/ even at the load of 0.9. These algorithms are extended to the three-stage Clos-Network optical packet switches in the companion paper.  相似文献   

5.
A major challenge in asynchronous packet‐based optical networks is packet contention, which occurs when two or more packets head to the same output at the same time. To resolve contention in the optical domain, two primary approaches are wavelength conversion and fiber delay line (FDL) buffering. In wavelength conversion, a contending packet can be converted from one wavelength to another in order to avoid conflict. In FDL buffering, contending packets can be delayed for a fixed amount of time. While the performance of wavelength conversion and FDL buffering has been evaluated extensively in synchronous networks with fixed‐sized packets, in this paper, we study the performance of FDL buffers in asynchronous packet‐based optical networks with wavelength conversion. An analytical model is proposed to evaluate the performance in terms of packet loss probability and average delay. Extensive simulation and analytical results show that, with appropriate settings, FDL buffers can perform much better in switches with wavelength conversion than in switches with no conversion. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
研究了FDL和有限长波长转换器(LRWC)相结合的方法来解决异步变长的分组交换网中的冲突问题,对这种冲突解决方案建立了数学模型并进行了理论分析,提出了一个用于修正最佳延迟单元的公式,即在负载较大的情况下,我们要求延迟单元较小,这样可显著的降低在此交换网中的分组丢失率;对系统丢包率与负载、FDL数目和最佳延迟单元的关系进行了研究和讨论,结果表明:在同样的输入负载情况下,有限长波长转换器(LRWC)的引入可以降低缓存的数量;对延迟单元的修正可以大大降低丢包率,同时系统的性能较之单独使用FDL时有较大的改善。  相似文献   

7.
Circumventing the speed bottleneck of electronic switching, novel switching approaches like optical burst switching (OBS) and optical packet switching (OPS) handle the switching of bursts (or packets) in backbone nodes optically, and include a set of fiber delay lines (FDLs) for optical buffering. While previous work acknowledges the performance difference between optical FDL buffers and electronic RAM buffers, the important role of synchronization herein has received little attention to date.  相似文献   

8.
In order to achieve service differentiation, especially loss differentiation, in optical burst switching (OBS) networks, we propose a dynamic fiber delay line (FDL) partitioning algorithm, which divides FDLs into several groups over a feed-forward output buffering architecture. In the proposed scheme, a plurality of traffic classes and FDL groups can be considered, and each FDL group is assigned to traffic classes, so that the target loss probabilities of classes are guaranteed. Also, the optimal number of FDLs for each FDL group by the proposed algorithm is decided in Poisson traffic environments. The extensive simulation results validate the effectiveness of the proposed dynamic FDL partitioning algorithm for the loss differentiation in OBS networks.  相似文献   

9.
Buffers are essential components of any packet switch for resolving contentions among arriving packets. Currently, optical buffers are composed of fiber delay lines (FDL), whose blocking and delay behavior differ drastically from that of conventional RAM at least two-fold: 1) only multiples of discrete time delays can be offered to arriving packets; 2) a packet must be dropped if the maximum delay provided by optical buffer is not sufficient to avoid contention, this property is called balking. As a result, optical buffers only have finite time resolution, which may lead to excess load and prolong the packet delay. In this paper, a novel queueing model of optical buffer is proposed, and the closed-form expressions of blocking probability and mean delay are derived to explore the tradeoff between buffer performance and system parameters, such as the length of the optical buffer, the time granularity of FDLs, and to evaluate the overall impact of packet length distribution on the buffer performance.  相似文献   

10.
Optical burst switching (OBS) is a promising paradigm for the next-generation Internet. In OBS, a key problem is to schedule bursts on wavelength channels, whose bandwidth may become fragmented with the so-called void (or idle) intervals, using both fast and bandwidth efficient algorithms so as to reduce burst loss. To date, two well-known scheduling algorithms, called Horizon and LAUC-VF, have been proposed in the literature, which trade off bandwidth efficiency for fast running time and vice versa, respectively. In this paper, we propose a set of novel burst scheduling algorithms for OBS networks with and without fiber delay lines (FDLs) utilizing the techniques from computational geometry. In networks without FDLs, our proposed minimum-starting-void (Min-SV) algorithm can schedule a burst in O(logm) time, where m is the total number of void intervals, as long as there is a suitable void interval. Simulation results suggest that our algorithm achieves a loss rate which is at least as low as LAUC-VF, but can run much faster. In fact, its speed can be almost the same as Horizon (which has a much higher loss rate). In networks with FDLs, our proposed batching FDL algorithm considers a batch of FDLs to find a suitable FDL to delay a burst which would otherwise be discarded due to contention, instead of considering the FDLs one by one. The average running time of this algorithm is therefore significantly reduced from that of the existing burst scheduling algorithms. Our algorithms can also be used as algorithmic tools to speed up the scheduling time of many other void-filling scheduling algorithms.  相似文献   

11.
Programmable variable delay lines have been developed, so as to delay packets in variable durations by combining several lengths of Fiber Delay Lines (FDLs) in optical packet switch. In practice, Two-stage variable optical packet switch with this programmable variable delay lines has been proposed. This switch has two buffers. The one is the programmable variable delay lines (Look-ahead Buffer). The other is the fixed FDLs that re-input a packet from the output to the input (Loop-back Buffer). The switch can foresee following packets and avoid contentions effectively by using two buffers. However, existing studies only focus on the Look-ahead Buffer. Intelligent usage of the Loop-back Buffer is actually out of concern. This paper proposes a sophisticated scheduling method in the Two-stage switch. The proposed method controls both the Look-ahead Buffer and the Loop-back Buffer cooperatively and improves the utilization of the switching process. The proposed method uses the Loop-back Buffer adaptively and distributes traffics in time and space domain. The effectiveness of the proposed method is evaluated through extended simulation experiments and basic hardware design.  相似文献   

12.
We develop analytical models to evaluate the performance of optical-burst switch (OBS) architectures employing fiber delay lines (FDLs) as optical buffers to reduce burst-loss probability. The performance of such architectures cannot be captured accurately using traditional queueing models, since FDLs behave fundamentally differently from conventional electronic buffers. We formulate a Markovian model to evaluate the system performance when the burst-arrival process is Poisson and the burst lengths are exponentially distributed under an idealized model of FDL behavior. The model accurately captures both the balking and deterministic delay properties of FDLs, but the complexity of the model makes it infeasible for solving problems of practical interest. By considering approximations of the model in the regimes of short and long FDLs, we develop relatively simple closed-form expressions that can be used for dimensioning OBS architectures. We also extend the approximate model to include the impact of FDL delay granularity. We present numerical results that validate our modeling approach and demonstrate that significant performance gains in optical-burst switching are achievable when FDLs are employed as optical buffers.  相似文献   

13.
QoS performance of optical burst switching in IP-over-WDM networks   总被引:31,自引:0,他引:31  
We address the issue of how to provide basic quality of service (QoS) in optical burst-switched WDM networks with limited fiber delay lines (FDLs). Unlike existing buffer-based QoS schemes, the novel offset-time-based QoS scheme we study in this paper does not mandate any buffer for traffic isolation, but nevertheless can take advantage of FDLs to improve the QoS. This makes the proposed QoS scheme suitable for the next generation optical Internet. The offset times required for class isolation when making wavelength and FDL reservations are quantified, and the upper and lower bounds on the burst loss probability are analyzed. Simulations are also conducted to evaluate the QoS performance in terms of burst loss probability and queuing delay. We show that with limited FDLs, the offset-time-based QoS scheme can be very efficient in supporting basic QoS.  相似文献   

14.
本文给出了一种OBS网络中组播业务的实现机制。它利用由光分路器和光纤延迟线(FDL)构成的组播功能模块实现了组播数据包在多分支节点处的复制、存储以及转发。仿真分析结果表明,该机制可以通过引入一定的时延,大幅降低丢包率。  相似文献   

15.
Optical packet switching (OPS) is a promising technology to enable next-generation high-speed IP networks. A major issue in OPS is packet contention that occurs when two or more packets attempt to access the same output fiber. In such a case, packets may be dropped, leading to degraded overall switching performance. Several contention resolution techniques have been investigated in the literature including the use of fiber delay lines (FDLs), wavelength converters (WCs), and deflection routing. These solution typically induce extra complexity to the switch design. Accordingly, a key design objective for OPS is to reduce packet loss without increasing switching complexity and delay. In this paper, we investigate the performance of contention resolution in asynchronous OPS architectures with shared FDLs and WCs in terms of packet loss and average switching delay. In particular, an enhanced FDL-based and a novel Hybrid architecture with shared FLDs and WCs are proposed, and their packet scheduling algorithms are presented and evaluated. Extensive simulation studies show that the performance of proposed FDL-based architecture outperforms typical OPS architectures reported in the literature. In addition, it shown that, for the same packet loss ratio, the proposed hybrid architecture can achieve up to 30% reduction in the total number of ports and around 80% reduction in the overall length of fiber as compared to the FDL-based architectures.  相似文献   

16.
By adding the redundant packets into source packet block, cross‐packet forward error correction (FEC) scheme performs error correction across packets and can recover both congestion packet loss and wireless bit errors accordingly. Because cross‐packet FEC typically trades the additional latency to combat burst losses in the wireless channel, this paper presents a FEC enhancement scheme using the small‐block interleaving technique to enhance cross‐packet FEC with the decreased delay and improved good‐put. Specifically, adopting short block size is effective in reducing FEC processing delay, whereas the corresponding effect of lower burst‐error correction capacity can be compensated by deliberately controlling the interleaving degree. The main features include (i) the proposed scheme that operates in the post‐processing manner to be compatible with the existing FEC control schemes and (ii) to maximize the data good‐put in lossy networks; an analytical FEC model is built on the interleaved Gilbert‐Elliott channel to determine the optimal FEC parameters. The simulation results show that the small‐block interleaved FEC scheme significantly improves the video streaming quality in lossy channels for delay‐sensitive video. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
The fiber delay line (FDL) buffer is widely used in optical packet switching networks for contention solution. In this paper, a quantized delay buffer model is proposed to analyze the performance of the single-wavelength FDL buffer. Considering the delay quantization in the FDLs, the delay time and the waiting time of the packet are discussed. Without specific assumptions of the packet arrival process and length distribution, the model presents a generic approach to study the delay time distribution and modify the integral equation for the waiting time distribution. Analytic and exact results of the two aforementioned distributions can be obtained without any approximation. The accuracy of the model is validated through simulation.  相似文献   

18.
刘焕淋  陈前斌  潘英俊 《光电子.激光》2007,18(10):1199-12,021,223
分析了简单的先到先服务(FCFS)光纤延迟线(FDL)循环占用方案性能,发现其分组丢失率(PLR)较高,提出3种输入分组按长度排序,寻找最小的FDL缓存优化分配方案.分析和仿真结果表明:约10%的分组排序后使3种方案都大大地能减小PLR,最小长度分组占用最小可用FDL缓存方案的性能最好.业务负载低于0.8时,排序的缓存方案对管理有限的FDL是有效的.  相似文献   

19.

Haptic communication is a form of non-verbal communication involving touch and feel. Haptic communication is a major requirement for the Tactile Internet that deals with mechanism to transmit touch, feel, and skills between two geographically distant entities, in realtime. Lately, haptic communication has become an essential requirement for variety of realtime robotic and Augmented/Virtual Reality applications. With very stringent delay and reliability requirements, haptic communication poses significant challenges for network engineers. This becomes further complicated when the cellular technology is used as the access medium for haptic communication. Since cellular networks are resource constrained, accommodating haptic users along with existing non-haptic users become a hard scheduling problem. In this paper, we propose an efficient latency-aware uplink resource allocation scheme satisfying end-to-end delay requirements of haptic users in a Long Term Evolution based cellular network. The proposed scheme first predicts the downlink and processing delays for users’ transmission flows. Subsequently, the model apply an optimal scheduling scheme for the uplink transmissions which satisfies expected end-to-end latency constraint. Our extensive simulations indicate that the proposed algorithm outperforms some of the widely used state-of-the-art scheduling schemes.

  相似文献   

20.
Packet contention is a major issue in an optical packet switching network. It is not a trivial task to resolve contention due to lack of optical RAM technology. This article proposes a two-stage shared fiber delay line (FDL) optical packet switch for contention resolution. In this article, shared FDLs are used to buffer optical packets, in which a pool of buffer memory is shared among all switch output ports. Most of the existing optical buffering schemes are output-based which require a huge number of FDLs as well as a larger switch size that incur extra implementation cost. However, a shared buffering approach is considered in this article in order to reduce implementation cost. In this article, FDLs are implemented in two stages using an extremely simple auxiliary switch. The proposed switch architecture leads to more efficient use of buffer space. The superiority of the proposed switch architecture has been established by means of extensive simulations. The performance of the proposed switch is investigated under bursty traffic. Simulation result shows that the proposed switch can achieve satisfactory performance at the price of a reasonable amount of FDLs. Moreover, the significance of the proposed switch is confirmed by simulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号