共查询到17条相似文献,搜索用时 93 毫秒
1.
研究了A位Nd3+、Dy3+、Y3+、Er3+、Sb3+替代对Bi2O3-ZnO-Nb2O5(BZN)基陶瓷结构和介电性能的影响.在替代量x≤0.4时,替代后的样品均保持单一的单斜焦绿石结构;Y3+替代的样品在960℃致密成瓷,Nd3+、Dy3+、Sb3+替代的样品在1 000℃致密成瓷,而Er3+替代的样品在1 050℃致密成瓷,因此,不同离子替代可有效地降低烧结温度;Nd3+、Dy3+、Y3+、Er3+替代样品的介电常数温度系数先增大后减小,当替代量x=0.4时,Y3+替代的样品的介电常数温度系数突然增大;而Sb3+替代样品的介电常数温度系数由286.842 1×10-6急剧减小到-171×10-6.因此,选择合适的离子替代可以获得性能很好的具有温度补偿特性的陶瓷(NPO)介质材料. 相似文献
2.
研究了(Bi2-xZnx)(Ti2-xNbx)O7(0.4≤x≤1.0)陶瓷材料的结构与介电性能.X-射线衍射结果表明,该组分体系在950~1 100 ℃烧结,可得到单相立方焦绿石结构陶瓷.扫描电子显微镜观察样品形貌发现,x越大,晶粒尺寸越大.室温介电性能的测试表明,在1 MHz条件下,随x值的增大,介电常数从218下降到122,损耗为(1~4)×10-4.介电温谱测试发现,该组分体系在低温下出现明显的介电弛豫峰,峰形随x增大逐渐宽化.微波特性的测试表明,在谐振频率2~3 GHz,样品的品质因数与谐振频率之积Q×f为112~158 GHz. 相似文献
3.
研究了Sm2O3掺杂的Bi2O3-ZnO-Nb2O5(BZN)基陶瓷(Bi1.5–SmxZn0.5)(Zn0.5Nb1.5)O7(0≤x≤1.5,BSZN)的结构x和介电性能。实验采用传统的固相反应法制备陶瓷样品,XRD分析样品的相结构。结果表明:未掺杂的BZN陶瓷其结构为立方焦绿石单相;当Sm2O3掺杂量较少(0相似文献
4.
5.
烧结助剂对(Bi1.5Zn1.0Nb1.5)O7陶瓷性能的影响 总被引:1,自引:0,他引:1
采用传统的固相反应法制备陶试样,借助XRD、SEM和LCR测试仪,研究了烧结助剂对(Bi1.5Zn1.0Nb1.5)O7微波介质陶瓷的烧结特性和介电性能的影响。实验结果表明,添加一定量的CuO、V2O5或两者的混合物后,陶瓷试样的烧结温度降到950℃以下,制备的试样具有良好的介电性能。介电常数εr为152~168,介质损耗tgδ为0.003~0.007(2MHz)。添加烧结助剂后的陶瓷试样的主晶相仍为焦绿石结构,但还出现少量Zn3Nb2O8和ZnO相。 相似文献
6.
采用水热法制备Bi1.5ZnNb1.5O7(BZN)纳米粉体,传统固相法制备Bi1.5ZnNb1.5O7(α-BZN)陶瓷。研究了掺入BZN纳米粉体对α-BZN陶瓷性能的影响。结果表明:掺入BZN纳米粉体对α-BZN陶瓷的烧结温度和物相没有影响,随BZN纳米粉体掺入量的增加,α-BZN陶瓷密度下降。但掺入质量分数10%的BZN纳米粉体,在1 000℃烧结的α-BZN陶瓷样品结晶良好,呈现出更优异的介电性能:1 MHz下εr约148,tanδ小于3.365×10–4。 相似文献
7.
采用传统的固相烧结工艺制备3种不同摩尔比的(1-x)BiFeO3-xCoFe2O4(简称(1-x)BFO-xCFO,x为摩尔分数,且x=0.1,0.3,0.5)复合陶瓷样品,并分析了其在室温和变温下的介电性能。研究结果表明,室温下陶瓷样品的介电常数和介电损耗均随CFO含量的增加而降低;当频率大于100kHz时,样品的介电常数随CFO含量的增加而变化不大;当x(CFO)=0.1时,样品在高频时介电损耗变小,而当x(CFO)=0.3或0.5时,陶瓷样品的介电损耗明显大于纯BFO陶瓷的介电损耗。在高温情况下,由于CFO的添加使陶瓷样品存在更多的缺陷活化及CFO所造成的漏电流,使样品在低频时的介电常数与介电损耗都变得很大。在100kHz频率下的交流导电率均随着温度的增加而减少;且相同温度下样品中包含的CFO含量越大其交流导电率也越大。当x(CFO)=0.3和0.5时,复合陶瓷样品的交流导电率随温度的变化规律几乎相同,且它们在相同温度下的交流导电率比纯BFO的大5~6个数量级。 相似文献
8.
采用传统固相法制备Dy2O3掺杂(Ba0.7Sr0.3)TiO3系电容器介质陶瓷,通过扫描电镜、X线衍射仪及LCR测试系统,研究不同含量的Dy2O3对体系微观结构及介电性能的影响.结果表明,随着Dy2O3添加量的增大,(Ba0.7Sr0.3)TiO3陶瓷平均粒径减小且Dy2O3掺杂(Ba0.7Sr0.3)TiO3陶瓷均为钙钛矿结构单相固溶体.Dy2O3通过占据钙钛矿晶格A、B位引起(Ba0.7Sr0.3)TiO3陶瓷晶格畸变,体系自发极化能力降低,进而显著降低了体系室温相对介电常数及介电损耗.随着Dy2O3添加量的增大,(Ba0.7Sr0.3)TiO3陶瓷居里温度向负温方向移动,且体系的相对介电常数及介电损耗随温度变化显著. 相似文献
9.
用X-射线衍射法(XRD)和HP网络分析仪研究了(1-x)CaWO4 xZn WO4(x=0~1.0)系列陶瓷材料的相组成和微波介电性能。结果表明,因CaWO4和ZnWO4结构的不同以及Ca2 和Zn2 离子半径差异较大使得CaWO4、ZnWO4两相不能固溶或形成新的中间化合物,因而成为CaWO4和ZnWO4的混合相。材料的介电常数rε随着x(ZnWO4)的增加而增大,复合相的介电常数基本符合对数混和法则。品质因数与频率之积Q×f值随ZnWO4增加从x=0时的50 842 GHz快速降低到x=0.4时的23 366 GHz,然后,随之缓慢降低到x=1.0时的20 557 GHz;而谐振频率温度系数fτ随之从x=0时的-50×10-6℃-1线性变化到x=1.0时的-70×10-6℃-1。 相似文献
10.
用固相反应法在1150℃烧结2h得到了致密的(1-x)ZnWO4-xTiO2 (0.1≤x≤0.8)系列微波介质陶瓷,对陶瓷的相组成、显微结构及微波介电性能进行了研究.结果表明:在(1-x)ZnWO4-xTiO2 (0.3≤x≤0.5)陶瓷样品中存在ZnWO4、TiO2及Zn2TiO4三相,当Zn2TiO4相的量较多时,样品的微波介电性能较好.随着TiO2的含量增加,(1-x) ZnWO4-xTiO2陶瓷的εr及τf值单调递增,而Q·f值则先上升后下降.当x=0.4时,(1-x)ZnWO4-xTiO2陶瓷样品的微波介电性能为:εr=26.56、Q·f=42 278 GHz及τf =61.37× 10-6/℃.它是一种具有中等介电常数,中低烧结温度且性能优良的微波介质陶瓷新体系. 相似文献
11.
采用传统固相反应法制备了0.4Bi(GaxFe1-x)O3-0.6PbTiOa (BGF-PT) (x=0.05,0.25,0.40,质量分数)陶瓷.BGF-PT呈四方相钙钛矿结构,四方畸变度c/a比约为1.09.当x(Ga) =25%时,BGF-PT陶瓷的晶粒分布均匀,Fe元素在局部区域无明显富集,该组分陶瓷在室温下具有最优的介电性能,居里温度为572℃.BGF-PT陶瓷在较低温度和高温下的载流子分别为电子和氧空位.Ga元素的引入抑制了电子电导和氧空位离子电导,降低了BGF-PT陶瓷的交流电导率. 相似文献
12.
在不同基片温度(RT、300、400、500和600℃)下,采用射频磁控溅射法制备了ZnO薄膜和BZN薄膜.研究表明,所制备的BZN薄膜拥有非晶态结构,ZnO薄膜具有c轴择优取向,在基片温度为500℃时,获得低的漏电流(10-7 A/cm2),比RT时的漏电流(10-4 A/cm2)低三个数量级.将所制备的ZnO薄膜和BZN薄膜分别作为ZnO-TFT的有源层和栅绝缘层,研究表明,在基片温度为500℃时,提高了器件性能,所取得的亚阈值摆幅(470 mV/dec.)是RT时的亚阈值摆幅(1 271 mV/dec.)的三分之一;界面态密度(3.21×1012 cm-2)是RT时的界面态密度(1.48×1013 cm-2)的五分之一. 相似文献
13.
采用固相烧结法制备了不同掺La量、不同烧结工艺的铋层化合物 Bi4-xLaxTi3O12(x=0,0.25,0.5,0.75,1)介电陶瓷。利用宽频LCR数字电桥和XRD、 SEM分析了Bi4-xLaxTi3O12介电陶瓷的晶相和微观结构对其介电性能的影响。研究表明,1050℃烧结温度保温4h的Bi3.5La0.5Ti3O12介电陶瓷,致密性好、晶粒均匀、具有良好的综合介电性能。 相似文献
14.
采用传统固相法制备了CaCu_((3-x))Zn_xTi_4O_(12)(CCTO,x=0,0.04,0.08,0.12)陶瓷。用X线衍射仪和扫描电子显微镜研究了Zn~(2+)掺杂含量的变化对CaCu_((3-x))Zn_xTi_4O_(12)陶瓷的相结构、微观形貌的影响规律,并研究了CaCu_((3-x))Zn_xTi_4O_(12)陶瓷的低、高频介电性能。结果表明,少量Zn~(2+)的加入影响CaCu_((3-x))Zn_xTi_4O_(12)陶瓷的相结构和微观形貌。在低频范围内,CaCu_((3-x))Zn_xTi_4O_(12)陶瓷均具有巨介电常数(>104),且CaCu_(2.92)Zn_(0.08)Ti_4O_(12)陶瓷的介电常数温度依赖性小,介电损耗最小,这加速了CCTO陶瓷在陶瓷电容器方向应用的潜力。在微波频段(5.85~8.2GHz)范围内,CaCu_((3-x))Zn_xTi_4O_(12)陶瓷均具有介电弛豫现象,CaCu_((3-x))Zn_xTi_4O_(12)陶瓷的介电常数实部随掺杂量的增加而减小,介电常数虚部和损耗对应的频率变化趋势与实部一致。 相似文献
15.
采用传统的固相反应法制备(Sr1-xBax)La4Ti4O15(x=0~1,BSLT)微波介质陶瓷,并对其物相组成、晶体结构及微波介电性能进行分析。研究结果表明,Ba2+含量的增加降低了BSLT陶瓷的烧结温度,陶瓷的主晶相为(Sr,Ba)La4Ti4O15,并伴随有第二相La2TiO5的生成。在微波频率下,随Ba2+含量的增加,BSLT陶瓷的微波介电常数εr及品质因数与频率之积Q×f值先增大后减小,谐振频率温度系数τf为(-4~-11)×10-6/℃,优化出(Sr0.9Ba0.1)La4Ti4O15陶瓷具有最佳微波介电性能:εr=47.5,Q×f=31 582GHz,τf=-7.5×10-6/℃。 相似文献
16.
采用射频磁控溅射法在蓝宝石基片上制备了Bi1.5Zn1.0Nb1.5O7(BZN)/Ba0.5Sr0.5TiO3(BST)双层复合薄膜,并研究了该薄膜在100 kHz~6 GHz频率范围内的介电性能。研究结果表明,BZN/BST复合薄膜的介电性能具有良好的频率稳定性。该复合薄膜的介电常数在研究的频率范围内基本与频率无关;其介电损耗在频率低于1 GHz时与频率无关,在频率高于1 GHz时随频率的上升而略微增大;薄膜在研究的频率范围内具有稳定的介电调谐率。 相似文献
17.
对CuO、V2O5掺杂的(1–x)BiNbO4-xZnTaO6(x=0.05~0.15)陶瓷体系结构和介电性能进行了研究。试验结果表明,940℃以下,体系为斜方BiNbO4和斜方ZnTaO6的复相结构;掺杂CuO、V2O5使得体系在较低温度下即可烧结成瓷,随着(1–x)BiNbO4-xZnTaO6体系中x的增加,陶瓷表观密度上升,εr下降,温度系数、损耗则呈增加趋势。x=0.05,910℃烧结保温2h有较好的微波性能,εr约为40,Q·f值达25000GHz。 相似文献