首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
Pot experiments were conducted with an acid laterite soil and a shallow black calcareous soil to study the effect of initial application of North Carolina and Udaipur rock phosphates, acidulated with HCl or H2SO4 to the extent of 25, 50, 75 or 100% of the requirement for complete conversion into superphosphate, on the grain yield and P uptake by crops in rice—wheat and wheat—rice cropping sequences. The products obtained on acidulation with HCl or H2SO4 at a given degree behaved similarly. Rock phosphates partially acidulated with HCl or H2SO4 to 50–75% could be used successfully for growing rice or wheat on both the soil types. In the rice—wheat sequence, the wheat crop following rice gave very low grain yields compared to the wheat crop in the wheat—rice rotation, while in the wheat—rice rotation the rice crop following wheat gave yields comparable to that of rice in the rice—wheat rotation. The reasons for this differential effect have been made plausible. The studies indicate that a 50–75% H2SO4 - or HCl-acidulated rock phosphate may be used as a single application to an upland crop in an upland crop—rice rotation especially on acid soils, where the water soluble fractions of the product are used by the wheat crop. During the process of growth of the upland crop under aerobic soil conditions, the citrate soluble and insoluble fractions undergo such transformations that make it possible for the following rice crop to utilize them under waterlogged conditions.  相似文献   

2.
The initial and residual fertilizer effectiveness of North Carolina RP (rock phosphate), monocalcium phosphate and partially acidulated RP (made from North Carolina RP at 30% acidulation), both granulated and non-granulated, were measured in a glasshouse experiment. Triticale (xTriticosecale) was grown for 30 days on a soil that had been adjusted to three pH values (4.2, 5.2 and 6.2). Two crops were grown with a six month interval between crops. The effectiveness of the different fertilizers was compared using relationships between (1) yield of dried tops and the amount of P applied and (2) P content (P concentration in tissue multiplied by yield) and the amount of P applied. For the first crop, relative effectiveness (RE) of the fertilizers was calculated relative to granulated monocalcium phosphate, the most effective fertilizer. Monocalcium phosphate was not applied to the second crop, so relative residual effectiveness (RRE) was estimated for each fertilizer relative to the residual effectiveness of granulated monocalcium phosphate.The relative effectiveness of granulated monocalcium phosphate (band application) was greater (RE = 1.00) than of North Carolina RP (0.01–0.02) and partially acidulated RP (0.45–0.76) for all three soil pH values for the first crop. Granulation and band application increased the effectiveness of monocalcium phosphate and partially acidulated RP, but reduced the effectiveness of North Carolina RP. Both non-granulated monocalcium phosphate and partially acidulated RP were less effective than granulated partially acidulated RP for both crops. For the second crop granulated monocalcium phosphate was most effective and the RRE of non-granulated partially acidulated RP (0.16–0.32) and North Carolina RP (0.19–0.28) was greater than for non-granulated monocalcium phosphate (0.12). For the more acidic soil the RE of non-granulated North Carolina RP was four times higher than for the high pH soil for the first crop and 60% higher for the second crop, but it was still poorly effective relative to granulated monocalcium phosphate. Granulated North Carolina RP was least effective among all the fertilizers for all soil pH values and for both crops.  相似文献   

3.
Gd3+-ESR spectroscopy can be used as a sensitive method for the study of lanthanide additives in catalysts. Here we present the results of a comparative study of Gd/SiO2-Al2O3 and Gd/HZSM-5. ESR gives evidence of rigid bonding of isolated Gd3+ ions into both amorphous silica-alumina and into HZSM-5. In addition, the zeolitic matrix stabilizes very small Gd3+-clusters (containing only a few ions) capable of interacting with water molecules. Excess Gd is present as non-dispersed, particulate oxide. Strong bonding of PO33- anionic ligands irreversibly changes the local environment and reactivity towards H2O of the Gd3+-clusters in HZSM-5. The Gd3+ ions do not block the cationic positions of HZSM-5 from further interaction with paramagnetic Cu2+ or Rh2+ cations. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Cyclic adsorption processes of PSA, VSA, and TSA were modeled and numerically simulated using SAPO-34 core-shell adsorbent. The results were compared with ordinary SAPO-34 to achieve a more efficient process for CO2–CH4 separation. OCM coupled with method of lines was used for numerical solution of the mechanistic model. The simulation results revealed higher efficiency of core-shell adsorbent with less usage of SAPO rather than the ordinary adsorbent to achieve the same degree of purification and recovery. VSA and TSA processes against PSA resulted in CH4 purification capability more than 99% with more than 73% recovery. However, VSA process has revealed higher productivity rather than TSA.  相似文献   

5.
Pt/CoAl2O4/Al2O3, Pt/CoOx/Al2O3, CoAl2O4/Al2O3 and CoOx/Al2O3 catalysts were studied for combination CO2 reforming and partial oxidation of CH4. The results indicate that Pt/CoAl2O4/Al2O3 is the most effective, and XRD results indicate that Pt species are well dispersed over the Pt/CoAl2O4/Al2O3. High dispersion is related to the presence of CoAl2O4, formed during calcining at high temperature before Pt addition. In the presence of Pt, CoAl2O4 in the catalyst could be reduced partially at 973 K. Based on these results, it appears that zerovalent platinum with high dispersion and zerovalent cobalt resulting from CoAl2O4 reduction are responsible for high activity in the Pt/CoAl2O4/Al2O3 catalyst.  相似文献   

6.
A solid solution of spinel (2/3)Li(Li1/3Ti5/3)O4–(1/3)Li(Ni1/2Ti3/2)O4 was prepared, and its structural/electrochemical properties were compared with Li(Li1/3Ti5/3)O4 to identify the effect of doping to the structural invariance of Li(Li1/3Ti5/3)O4. The solid solution retained the zero strain characteristic of Li(Li1/3Ti5/3)O4 during discharge/charge with an excellent cycle stability, while the rate capability was notably improved. However, a reversible broadening of the XRD peak was observed at the end of discharge, indicating some structural changes. XANES measurements showed that the oxidation state of Ti was +4 and that of Ni was +2 in the solid solution.  相似文献   

7.
Transition metal oxides (Ti, V, Mo, Cr, etc.) incorporated within the framework of zeolites were found to exhibit high and unique photocatalytic reactivity as single-site heterogeneous catalysts for various reactions such as the decomposition of NOx (NO, N2O) into N2 and O2, the reduction of CO2 with H2O to produce CH4 and CH3OH, the preferential oxidation of CO in the presence of H2 (PROX), the partial oxidation of various hydrocarbons with O2 or NO or N2O and the epoxidation and metathesis reaction of alkenes. In situ spectroscopic investigations of these photofunctional systems applying photoluminescence, XAFS (XANES and FT-EXAFS), ESR and FT-IR revealed that the photo-excited states of the transition metal oxides play a vital role in the photocatalytic reactions. The high photocatalytic efficiency and selectivity of these single-site catalysts for significant reactions, which could not be observed with semiconducting bulk photocatalysts, were found to depend strongly on the unique and isolated local structure of the catalysts constructed within the restricted framework structure of the zeolites.  相似文献   

8.
A pilot study was conducted from October 2007 to November 2010 to establish the long-term feasibility of using reverse osmosis (RO) treatment to manage salt levels in Central Arizona Project water. Pretreatments consisting of microfiltration (MF) and slow sand filtration (SSF) were compared based on performance—turbidity removal, silt density index (SDI), volume treated between cleaning events and protection of downstream RO—during side-by-side operation over a yearlong period. SSF always produced feed water that was suitable for RO treatment (SDI < 5). However, MF consistently provided filtrate with SDI < 3, and long-term RO performance improved significantly with MF as pretreatment. Although the economic costs of MF and SSF pretreatments are similar; MF is preferred based on the quality of treated water and stability of downstream RO operation.  相似文献   

9.
Proton-exchange membrane fuel cells (PEMFCs) are considered to be a promising technology for efficient power generation in the 21st century. Currently, high temperature proton exchange membrane fuel cells (HT-PEMFC) offer several advantages, such as high proton conductivity, low permeability to fuel, low electro-osmotic drag coefficient, good chemical/thermal stability, good mechanical properties and low cost. Owing to the aforementioned features, high temperature proton exchange membrane fuel cells have been utilized more widely compared to low temperature proton exchange membrane fuel cells, which contain certain limitations, such as carbon monoxide poisoning, heat management, water leaching, etc. This review examines the inspiration for HT-PEMFC development, the technological constraints, and recent advances. Various classes of polymers, such as sulfonated hydrocarbon polymers, acid-base polymers and blend polymers, have been analyzed to fulfill the key requirements of high temperature operation of proton exchange membrane fuel cells (PEMFC). The effect of inorganic additives on the performance of HT-PEMFC has been scrutinized. A detailed discussion of the synthesis of polymer, membrane fabrication and physicochemical characterizations is provided. The proton conductivity and cell performance of the polymeric membranes can be improved by high temperature treatment. The mechanical and water retention properties have shown significant improvement., However, there is scope for further research from the perspective of achieving improvements in certain areas, such as optimizing the thermal and chemical stability of the polymer, acid management, and the integral interface between the electrode and membrane.  相似文献   

10.
Modifications of carbon for polymer composites and nanocomposites   总被引:1,自引:0,他引:1  
The various forms of carbon used in composite preparation include mainly carbon-black, carbon nanotubes and nanofibers, graphite and fullerenes. This review presents a detailed literature survey on the various modifications of the carbon nanostructures for nanocomposite preparation focusing upon the works published in the last decade. The modifications of each form of carbon are considered, with a compilation of structure-property relationships of carbon-based polymer nanocomposites. Modifications in both bulk and surface modifications have been reviewed, with comparison of their mechanical, thermal, electrical and barrier properties. A synopsis of the applications of these advanced materials is presented, pointing out gaps to motivate potential research in this field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号