首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
Ca(Mg1/3Nb2/3)O3 (CMN) and Ba(Zn1/3Nb2/3)O3 (BZN) ceramic disks were stacked with three stacking schemes, designated as CMN/BZN, CMN/BZN/CMN, and BZN/CMN/BZN, to yield layered dielectric resonators, and the microwave dielectric characteristics were evaluated with the TE01δ mode. Both experiments and finite element analysis showed that the microwave dielectric characteristics of the layered resonator were determined not only by the volume fraction of BZN but also by the stacking scheme. For each stacking scheme, a good combination of microwave dielectric characteristics with an effective dielectric constant of 34.33–34.52, a Q × f value of 58 800–62 080 GHz, and a near-zero temperature coefficient of resonant frequency could be achieved by adjusting the volume fraction of BZN. The effects of the stacking scheme on the microwave dielectric characteristics of the temperature-stable layered resonator were discussed by combining finite element analysis and dielectric composite models.  相似文献   

2.
Highly (001)-oriented (Pb0.76Ca0.24)TiO3 (PCT) thin films were grown on Pt/Ti/SiO2/Si substrates using a sol–gel process. The PCT film with a highly (001) orientation showed well-saturated hysteresis loops at an applied field of 800 kV/cm, with remanent polarization ( P r) and coercive electric field ( E c) values of 23.6 μC/cm2 and 225 kV/cm, respectively. At 100 kHz, the dielectric constant and dielectric loss values of these films were 117 and 0.010, respectively. The leakage-current density of the PCT film was 6.15 × 10−8A/cm2 at 5 V. The pyroelectric coefficient ( p ) of the PCT film was measured using a dynamic technique. At room temperature, the p values and figures-of-merit ( F D) of the PCT film were 185 μC/m2K and 1.79 × 10−5 Pa−0.5, respectively.  相似文献   

3.
BaCu(B2O5) ceramics were synthesized and their microwave dielectric properties were investigated. BaCu(B2O5) phase was formed at 700°C and melted above 850°C. The BaCu(B2O5) ceramic sintered at 810°C had a dielectric constant (ɛr) of 7.4, a quality factor ( Q × f ) of 50 000 GHz and a temperature coefficient of resonance frequency (τf) of −32 ppm/°C. As the BaCu(B2O5) ceramic had a low melting temperature and good microwave dielectric properties, it can be used as a low-temperature sintering aid for microwave dielectric materials for low temperature co-fired ceramic application. When BaCu(B2O5) was added to the Ba(Zn1/3Nb2/3)O3 (BZN) ceramic, BZN ceramics were well sintered even at 850°C. BaCu(B2O5) existed as a liquid phase during the sintering and assisted the densification of the BZN ceramic. Good microwave dielectric properties of Q × f =16 000 GHz, ɛr=35, and τf=22.1 ppm/°C were obtained for the BZN+6.0 mol% BaCu(B2O5) ceramic sintered at 875°C for 2 h.  相似文献   

4.
Monoclinic pyrochlore ceramic Bi2Zn2/3− x /3Nb4/3−2 x /3Ti x O7 (M–BZN) with x =0–0.4 is synthesized and the structure and microwave cryogenic properties are scrutinized. The dielectric constant (ɛ') and loss tangent (tanδ) of these ceramics are measured at a frequency of 3 GHz and temperature range of 15–300 K. With an increase in x value from 0 to 0.4, the dielectric constant and dielectric loss tangent of the investigated materials increase from 70 to 114 and 0.009 to 0.061, respectively. The Ti-substituted ceramics show an increase in dielectric constant with temperature, and the loss tangent shows a peak around 200 K. The peak in the dielectric loss tangent becomes more prominent with an increase of Ti content. The temperature where the dielectric loss tangent peak appears is found to be decreasing slightly with an increase of titanium doping. The observed dielectric characteristics of the titanium-doped M–BZN ceramics are attributed to the presence of the relaxation in these materials, originating from the disorder caused by the Ti4+ substitution.  相似文献   

5.
PbTiO3-doped sodium bismuth titanate (Na1/2Bi1/2)1− x Pb x TiO3 of perovskite structure is one of the best-known piezoelectrics/ferroelectrics. However, it has not been properly investigated in any thin-film forms. In this study, the dielectric properties of (Na1/2Bi1/2)0.87Pb0.13TiO3 thin films synthesized via a sol–gel route were investigated. They exhibit a strong frequency dispersion of the dielectric permittivity at relatively high frequencies, which is shifted to lower frequencies with increasing temperature. The electrical behavior can be fitted using Jonscher's universal law for dielectric relaxation. The peculiar dielectric behaviors observed can be ascribed to the coexistence of two different dielectric phases in the films, which is believed to be associated with the growth of the local Pb2+TiO3 nanoclusters upon substitution of Pb2+ for Na+/Bi3+ in the (Na1/2Bi1/2)1− x Pb x TiO3 films.  相似文献   

6.
Effects of excess Bi2O3 content on formation of (Bi3.15Nd0.85)Ti3O12 (BNT) films deposited by RF sputtering were investigated. The microstructures and electrical properties of BNT thin films are strongly dependent on the excess Bi2O3 content and post-sputtering annealing temperature, as examined by XRD, SEM, and P – E hysteresis loops. A small amount of excess bismuth improves the crystallinity and therefore polarization of BNT films, while too much excess bismuth leads to a reduction in polarization and an increase in coercive field. P – E loops of well-established squareness were observed for the BNT films derived from a moderate amount of Bi2O3 excess (5 mol%), where a remanent polarization 2P r of 25.2 μC/cm2 and 2E c of 161.5 kV/cm were shown. A similar change in dielectric constant with increasing excess Bi2O3 content was also observed, with the highest dielectric constant of 304.1 being measured for the BNT film derived from 5 mol% excess Bi2O3.  相似文献   

7.
0.5Pb(Mg1/3Nb2/3)O3-0.5PbTiO3 thin films were prepared on Pt(111)/Ti/SiO2/Si(100) substrates by varying the film formation procedures and heating processes. Depending on the multilayer film formation and appropriate heating process, the films were grown with a preferential orientation. The films showed a (100)-preferred orientation and large grain-size distribution when they were directly heat-treated after deposition of amorphous layers. The films showed a (111)-preferred orientation and small grain-size distribution when formed layer-by-layer or directly heating amorphous thin films with a perovskite seed layer. These results were explained by the effect of a seed layer. Saturation polarization of the (111)-preferred films was ∼35 µC/cm2, which was somewhat higher than that of the (100)-preferred film. In contrast, the dielectric constant of the (100)-preferred film was ∼1600, which was larger than that of the (111)-preferred film.  相似文献   

8.
Pb(Mg1/3Nb2/3)O3–PbTiO3 (PMN–PT) thin films were prepared by spin coating using aqueous solutions of metal salts containing polyvinylpyrrolidone, where niobium oxide layers and lead—magnesium–titanium oxide layers were laminated on Pt(111)/TiO x /SiO2/Si(100) substrates and fired at 750° or 800°C. 250 ± 20 nm thick 0.7PMN–0.3PT thin films of a single-phase perovskite could be prepared, and the film fired at 750°C had dielectric constants and dielectric loss of 1900 ± 350 and 0.13 ± 0.03, respectively, exhibiting polarization-electric field hysteresis with a remanent polarization of 5.1 μC/cm2 and a coercive field of 21 kV/cm.  相似文献   

9.
Bi2O3–ZnO–Nb2O5-based pyrochlore ceramics are receiving increasing attention due to their excellent dielectric properties in the microwave frequency range. Site disorder at the pyrochlore A-site is well known for lone pair active cations like Bi3+ and is attributed as the reason for this material's high dielectric constant and tunability. Bismuth zinc niobate ((Bi1.5Zn0.5)(Nb1.5Zn0.5)O7) [BZN] ceramics are prepared by the conventional solid-state reactions. The relative permittivity (r) and the dielectric loss tangent (tan δ) of the BZN ceramics sintered at 1000 °C are found to be around 130 and 0.0004, respectively at a frequency of 1 MHz measured at room temperature. The impedance spectroscopy measurements are conducted at different temperatures to separate grain and grain boundary contributions to the dielectric constant. The tunability of these ceramics is studied under a constant dc bias voltage.  相似文献   

10.
The compositionally graded BiScO3–PbTiO3 (BSPT) thin films were fabricated on Pt/Ti/SiO2/Si by a sol–gel method. For the up-graded thin film, the PbTiO3 content increased from the film–substrate interface to the surface of the film, while the down-grade thin film showed the opposite trend. The graded thin films exhibited single-phase structures and dense microstructures. The dielectric and ferroelectric properties of the thin films were investigated. The results showed that the compositionally graded BSPT thin films had similar remanent polarization value but a higher dielectric constant, dielectric tunability, and piezoelectric coefficient d 33 compared with the homogeneous thin film with a composition of 0.36BiScO3–0.64PbTiO3 at the morphotropic phase boundary.  相似文献   

11.
Ferroelectric 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 (PMN-PT) thin films were deposited on ZrO2/SiO2/silicon substrates using a chemical-solution-deposition method. Using a thin PZT film as a seed layer for the PMN-PT films, phase-pure perovskite PMN-PT could be obtained via rapid thermal annealing at 750°C for 60 s. The electrical properties of in-plane polarized thin films were characterized using interdigitated electrode arrays on the film surface. Ferroelectric hysteresis loops are observed with much larger remanent polarizations (∼24 μC/cm2) than for through-the-thickness polarized PMN-PT thin films (10–12 μC/cm2) deposited on Pt/Ti/Si substrates. For a finger spacing of 20 μm, the piezoelectric voltage sensitivity of in–plane polarized PMN-PT thin films was ∼20 times higher than that of through-the-thickness polarized PMN-PT thin films.  相似文献   

12.
The density; molar volume; thermal expansion coefficient; dissolution rate in water, HC1, and NaOH; glass transition and crystallization temperatures; and the absorption edge in the ultraviolet-visible and infrared were measured for PbO─BiO1.5─GaO1.5 glasses. The range of compositions investigated was x PbO (100 − (x + y) )BiO1.5. yGaO1.5 for x between 20 and 60 cat% and y of 20, 25, 30, and 35 cat%. The glass-forming tendency increased with increased GaO1.5 and decreased with increased PbO or BiO1.5. The compositional dependence of these properties was consistent with the weight, size, charge, and bond strength of the cations. The Ga3 + ions in these glasses are believed to act primarily as network-forming cations, whereas the majority of the Bi3+ and Pb2+ ions behave as network-modifying cations. It is suggested that a small friction of the lead ions are present as Pb4+. Depending upon melting conditions, these glasses ranged in color from brown to yellow. Various attempts, including containerless melting, were made to obtain colorless glasses, but no conditions were found which totally eliminated the color. The least color (pale yellow) was obtained when the glasses were melted in an air or nitrogen atmosphere in an alumina or gold crucible.  相似文献   

13.
PbTiO3(PT)-PbO-SiO2 glass-ceramic thin films were pro-duced by a sol-gel process. The crystallization of PT oc-curred at ∼700°C and was higher than that in PT-PbO-B2 O3 sol-gel glass-ceramics. A pinhole-free thin film was obtained by a rapid thermal annealing process when the designed glass-forming phase content in the thin film was >24 vol%. The measured dielectric constants of the films fairly agreed with the predicted values, based on a parallel mixing model. The dielectric constant was 219 and the di-electric loss was 0.04 in the 0.6PT-0.4(PbO-SiO2) film that was fired at 700°C.  相似文献   

14.
MnO-doped 0.82Bi0.5Na0.5TiO3–0.18Bi0.5K0.5TiO3(NBT–KBT) thick films with thickness about 40 μm have been prepared using screen printing on Pt electroded alumina substrates. The strong pyroelectric coefficient of 3.8 × 10−4 C·(m2·°C)–1 was observed in 1.0 mol% MnO-doped-thick films, and the calculated detectivity figure of merit as high as 1.1 × 10−5 Pa−0.5, which can be comparable to that of the commonly used lead based materials. The enhancement of the pyroelectric performances is attributed to the reductions in dielectric constant and loss and the improvements in the pyroelectric coefficient, which can be ascribed to the Mn acts as a hard dopant in the NBT–KBT lattice, creating oxygen vacancies and pinning the residual domains.  相似文献   

15.
The defect structure in 3 mol% Y-TZP was studied by correlated internal friction, dielectric loss, and ionic conductivity experiments. A prominent mechanical and dielectric loss peak occurs in the temperature range between 380 and 550 K that depends on the frequency of measurement. The relaxation parameters were determined as Hm = 90 ± 3 kJ·mol−1, τ= (1.0+1.5−0.6) × 10−14 s for the mechanical relaxation and Hd = 84 ± 3 kJ·mol−1, τ= (1.6+1.7−0.9) × 10–13 s for the dielectric relaxation. The ionic conductivity below 790 K is controlled by an activation enthalpy of H σ= 89 ± 3 kJ·mol−1; at higher temperatures H σ= 60 ± 3 kJ·mol–1. An atomistic model is presented which assumes that oxygen vacancies are trapped by yttrium ions forming anisotropic complexes which—by reorientation—cause anelastic and dielectric relaxation. At higher temperatures (>790 K) these complexes are dissociated, which leads to the reduced activation enthalpy for ionic conductivity.  相似文献   

16.
The effect of a 20-nm thick TiO2 seeding layer on the growth of a Bi3.15Nd0.85Ti3O12 (BNT) thin film on Pt(111) thin-film substrates has been studied. Under otherwise identical deposition process conditions, the BNT film could be turned from a highly random orientation to a (200) preference orientation by adding the seeding layer. Field-emission scanning electron microscope result reveals that the BNT thin film with the TiO2 seeding layer is composed of fine grains with smaller sizes about 80–150 nm in diameter. The P r and E c values of the BNT thin film and BNT film with the TiO2 seeding layer were 36 and 16 μC/cm2, and 96.9 and 92 kV/cm at a voltage of 12 V, respectively. The fatigue test exhibited a very strong fatigue endurance up to 109 cycles for both films. The leakage current densities were generally in the order of 10−6–10−5 A/cm2 for both samples.  相似文献   

17.
Praseodymium doped Bi4Ti3O12 (BTO) thin films with composition Bi3.63Pr0.3Ti3O12 (BPT) were successfully prepared on Pt/Ti/SiO2/Si substrates by RF-magnetron sputtering method at substrate temperatures ranging between 500° and 750°C. The structural phase and orientation of the deposited films were investigated in order to understand the effect of the deposition temperature on the properties of the BPT films. As the substrate temperature was increased to 700°C, the films started showing a tendency of assuming a c -axis preferred orientation. At lower temperatures, however, polycrystalline films were formed. The Pt/BPT/Pt capacitor showed an interesting dependence of the remnant polarization (2 P r) as well as dc leakage current values on the growth temperature. The film deposited at 650°C showed the largest 2 P r of 29.6 μC/cm2. With the increase of deposited temperature, the leakage current densities of films decreased at the same applied field and the film deposited at 750°C exhibited the best leakage current characteristics. In addition, the ferroelectric fatigue and Raman measurements were carried out on the as-prepared, postannealed in air and postannealed in oxygen BPT films. It was revealed that the BPT film postannealed in air exhibited the weakest fatigue-resistance characteristics and highest frequency shifted Raman vibration modes, indicating the highest oxygen vacancy concentration in this film.  相似文献   

18.
BiScO3–PbTiO3 (BSPT) thin films near the morphotropic phase boundary were successfully fabricated on Pt(111)/Ti/SiO2/Si substrates via an aqueous sol–gel method. The thin films exhibited good crystalline quality and dense, uniform microstructures with an average grain size of 50 nm. The dielectric, ferroelectric, and piezoelectric properties of the sol–gel-derived BSPT thin films were investigated. A remanent polarization of 74 μC/cm2 and a coercive field of 177 kV/cm were obtained. The local effective piezoelectric coefficient d *33 was 23 pC/N at 2 V, measured by a scanning probe microscopy system. The dielectric peak appeared at 435°C, which was 80°C higher than that of Pb(Ti, Zr)O3 thin films.  相似文献   

19.
Zn-substituted CaCu3Ti4O12 ceramics were synthesized by solid-state sintering. Their microstructures and dielectric properties were investigated. Ca(Cu1− x Zn x )3Ti4O12 single-phase structures were obtained up to x =0.1, and the Cu+/Cu2+ and Ti3+/Ti4+ mixed-valent structure was enhanced with increasing Zn substitution. The giant dielectric response was significantly enhanced by Zn substitution. The dielectric constant increased with increasing x , and a giant dielectric constant plateau as high as ∼9 × 104 was achieved for x =0.1 at 10 kHz, while that for x =0 was ∼3 × 104. The enhanced giant dielectric response was profoundly concerned with the modified mixed-valent structure.  相似文献   

20.
Physical and dielectric properties of (1– x )PbZrO3· x BaTiO3 thin films prepared by a chemical coating process have been investigated as a function of BaTiO3 ( x ) content (0≤ x ≤0.2). Changing the molar ratio between propylene glycol and water prior to the deposition optimized the chemical precursors. (1– x )PbZrO3- x BaTiO3 thin films that contained a majority of perovskite phase, but also contained large amounts of other phases, were fabricated. These films could withstand fields of 250 kV/cm at 1 kHz. The microstructure of the thin films was found to depend on the BaTiO3 content. The phase transition from antiferroelectric to ferroelectric was gradually induced as the BaTiO3 content increased. A maximum dielectric constant of ∼809 was obtained at the composition of x = 0.1. A maximum dielectric constant of ∼809 was obtained at the composition of x = 0.1. A thin film at the low-field antiferroelectric-ferroelectric phase boundary with x = 0.05 exhibited the highest P sat and P r values. The maximum values of these were 45 and 31 μC/cm2, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号