首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The formation and speciation of disinfection byproducts (DBPs) resulting from chlorination of nanofilter permeates obtained from various source water locations and membrane types are examined. Specific ultraviolet absorbance and bromide utilization are shown to decrease following nanofiltration. Both dissolved organic carbon (DOC) concentration and ultraviolet absorbance at 254 nm were found to correlate strongly with trihalomethane (THM), haloacetic acid (HAA), and total organic halide (TOX) concentrations in chlorinated nanofilter permeates, suggesting that they can be employed as surrogates for DBPs in nanofiltered waters. Because smooth curves were obtained for individual THM and HAA species as well as bromine and chlorine incorporation into THMs and HAAs as a function of Br-/DOC molar ratio, it is likely that mole fractions of these DBPs are more strongly influenced by chlorination conditions, Br-, and DOC concentrations than NOM source and membrane type. Mole fractions of mono-, di-, and trihalogenated HAAs were found to be independent of Br-/DOC. Even at a very low Br-/DOC of 2.9microM/mM, the mixed bromochloro- and tribromoacetic acids constituted 20% of total HAAs on a molar basis. This increased to approximately 50% as Br-/DOC increased to approximately 25microM/mM or more, proving that a large fraction of HAAs may not be covered under existing federal regulations. Total THM and HAA9 concentrations decreased in permeate waters with increasing Br-/DOC suggesting that nanofilter permeates are limited with respect to DBP precursors.  相似文献   

2.
High levels of dissolved organic carbon (DOC) and bromide (Br) in the Sacramento and San Joaquin River waterways are of concern because DOC and Br are organic and inorganic precursors, respectively, of carcinogenic and mutagenic disinfection byproducts (DBPs). The Sacramento and San Joaquin Rivers are the two major rivers supplying water to the San Francisco Bay Delta, but sources and loads of DBP precursors into the Delta are still uncertain. The major objectives of this study were to evaluate both the quantity (DOC and Br fluxes) and the quality (reactivity in forming DBPs) of DBP precursors from the Sacramento and San Joaquin watersheds. Water samples were collected every 2 weeks at up to 35 locations along the Sacramento and San Joaquin Rivers and selected tributaries and analyzed for DOC (4 years), Br (1 year), and ultraviolet absorbance at 254 nm (1 year). Selected water samples were also tested for THM formation potential. Estimated fluxes for the Sacramento River were 39 000 +/- 12 000 Mg DOC year(-1) and 59 Mg of Br year(-1) as compared to 9000 +/- 5000 Mg of DOC year(-1) and 1302 Mg of Br year(-1) for the San Joaquin River. The THM formation potential was higher in the San Joaquin River (441 +/- 49 microg L(-1)) than the Sacramento River (176 +/- 20 microg L(-1)) because of higher concentrations of both organic (DOC = 3.62 +/- 0.14 vs 1.92 +/- 0.09 mg L(-1)) and inorganic DBP (Br = 0.80 +/- 0.07 vs < 0.03 +/- 0.01 mg L(-1)) precursors. The Sacramento River's greater DOC load despite lower DOC concentrations is due to its discharge being about 5 times greater than the San Joaquin River (50 x 10(9) vs 10 x 10(9) L day(-1)). The DOC concentration was significantly correlated with several land-cover types, including agriculture; however, no relationship was found between DOC quality and land-cover at the watershed scale.  相似文献   

3.
Natural organic matter (NOM) from five water sources was fractionated using XAD resins and ultrafiltration membranes into different groups based on hydrophobicity and molecular weight (MW), respectively. The disinfection byproduct formation from each fraction during chlorination and chloramination was studied. In tests using chlorination, hydrophobic and high MW (e.g., >0.5 kDa) precursors produced more unknown total organic halogen (UTOX) than corresponding hydrophilic and low MW (e.g., <0.5 kDa) precursors. Trihaloacetic acid (THAA) precursors were more hydrophobic than trihalomethane (THM) precursors. The formation of THM and THAA was similar among different fractions for a water with low humic content. Hydrophilic and low MW (<0.5 kDa) NOM fractions gave the highest dihaloacetic acid (DHAA) yields. No significant difference was found for DHAA formation among different NOM fractions during chloramination. Increasing pH from 6 to 9 led to lower TOX formation for hydrophobic and high MW NOM fractions but had little impact on TOX yields from hydrophilic and low MW fractions. Bromine and iodine were more reactive with hydrophilic and low MW precursors as measured by THM or HAA formation than their corresponding hydrophobic and high MW precursors. However, hydrophobic and high MW precursors produced more UTOX when reacting with bromine and iodine.  相似文献   

4.
While it is known that resorcinol- and phenol-type aromatic structures within natural organic matter (NOM) react during drinking water chlorination to form trihalomethanes (THMs), limited studies have examined aliphatic-type structures as THM and haloacetic acid (HAA) precursors. A suite of aliphatic acid model compounds were chlorinated and brominated separately in controlled laboratory-scale batch experiments. Four and two beta-dicarbonyl acid compounds were found to be important precursors for the formation of THMs (chloroform and bromoform (71-91% mol/mol)), and dihaloacetic acids (DXAAs) (dichloroacetic acid and dibromoacetic acid (5-68% mol/mol)), respectively, after 24 h at pH 8. Based upon adsorbable organic halide formation, THMs and DXAAs, and to a lesser extent mono and trihaloacetic acids, were the majority (> 80%) of the byproducts produced for most of the aliphatic beta-dicarbonyl acid compounds. Aliphatic beta-diketone-acid-type and beta-keto-acid-type structures could be possible fast- and slow-reacting THM precursors, respectively, and aliphatic beta-keto-acid-type structures are possible slow-reacting DXAA precursors. Aliphatic beta-dicarbonyl acid moieties in natural organic matter, particularly in the hydrophilic fraction, could contribute to the significant formation of THMs and DXAAs observed after chlorination of natural waters.  相似文献   

5.
Humic acid (HA) was extracted and separated into different molecular weight (MW) fractions, then coagulated by aluminum chloride and polyaluminum chloride (PACl). The removal of disinfection byproduct (DBP) precursors and the aluminum speciation variation of the coagulants were investigated in detail. In particular, the role of aluminum speciation in the removal of DBP precursors was discussed. During the coagulation process, AlCl3 hydrolyzed into dominating in situ Al13 species at pH 5.5. The in situ Al13 species exhibited better removal ability for haloacetic acid (HAA) precursors than PACl. At pH 7.5, in situ hydrolyzed Al13 species of AlCl3 decomposed into dimeric Al species. In this case, preformed Al13 of PACl had a high removal ability of HAA precursors. Specially, the greatest reduction of HAA precursors with a low MW (<30 kDa) was through charge neutralization at pH 5.5, and that of HAA precursors in high MW (> 30 kDa) fractions was through adsorption at pH 7.5. Different from HAA precursors, the in situ Al13 species did not have a high removal ability of trihalomethane (THM) precursors. Therefore, PACl exhibited a better removal ability of THM precursors than AlCl3 at different pH values. In the different MW fractions, the greatest reduction of THM precursors was through charge neutralization at pH 5.5.  相似文献   

6.
The effects of a restored wetland system in the Sacramento Valley, California on the production of dissolved organic carbon (DOC) and nitrogen (DON) and the formation potential of common disinfection byproducts (DBPs: trihalomethanes, haloacetonitriles, and chloral hydrate) were examined. Additionally, the effects of photodegradation and microbial degradation on dissolved organic matter properties and reactivitywith respect to DBP formation potential (DBP-FP) were evaluated. The wetlands increased DOC and DON concentrations by a factor of 2.2 and 1.9 times, respectively, but had little influence on the DOC and DON quality as compared to their source waters. The increase in DOC and DON concentrations increased the formation potential of all DBP species by >100%. Solar radiation and microbial degradation reduced the trihalomethane formation potential by 24 and 10%, respectively, during a 14 day incubation. In contrast, the chloral hydrate formation potential was increased by 22% after phototreatment. Results indicate that current flood-pulse management practices with a 2-3 week residence time could lead to wetlands acting as a source of DBP precursors. Enhanced DBP-FP is especially important as these wetlands contribute to a watershed that is a drinking water source for more than 23 million people.  相似文献   

7.
The effects of 640 kHz sonolysis and 60Co gamma-radiolysis on dissolved organic matter (DOM) were compared through UV/ vis absorption spectrometric, dissolved organic carbon concentration ([DOC]), and potentiometric titration analyses. A reverse-phase chromatographic technique was used to compare changes in the DOM hydrophobicity distribution, and a size exclusion chromatographic technique with inline UV-A absorbance, fluorescence, and [DOC] detectors was used to compare changes in the DOM molecular weight distribution. Whereas upon radiolysis major decreases in absorbance and [DOC] were induced and near-total DOC removal was achieved, upon sonolysis there were major decreases in UV/vis absorbance but only minor decreases in [DOC], and a substantial quantity of hydrophilic nonchromophoric material remained in solution. In radiolysis, hydrophilic and hydrophobic DOM solution components were exposed to equal hydroxyl radical (*OH) concentrations. However, in sonolysis, hydrophobic DOM components were exposed to more elevated *OH concentrations than the hydrophilic components and consequently had enhanced rates of degradation. Sonolysis may be of interest in the design of advanced oxidation processes in which the selective elimination of hydrophobic solution components, such as hydrophobic organic contaminants and hydrophobic DOM domains into which they partition, is desired.  相似文献   

8.
Various water quality and treatment characteristics were evaluated under controlled chlorination conditions to determine their influences on the formation and distribution of nine haloacetic acids and four trihalomethanes in drinking water. Raw waters were sampled from five water utilities and were coagulated with alum and fractionated with XAD-8 resin. The resulting four fractions--raw and coagulated water and the hydrophobic and hydrophilic extracts--were then chlorinated at pH 6 and 8 and held at 20 degrees C for various contact times. The results show that increasing pH from 6 to 8 increased trihalomethane formation but decreased trihaloacetic acid formation, with little effect on dihaloacetic acid formation. More trihalomethanes were formed than haloacetic acids at pH 8, while the reverse was true at pH 6. Hydrophobic fractions always gave higher haloacetic acid and trihalomethane formation potentials than their corresponding hydrophilic fractions, but hydrophilic carbon also played an important role in disinfection byproduct formation for waters with low humic content. The bromine-containing species comprised a higher molar proportion of the trihalomethanes than of the haloacetic acids. The hydrophilic fractions were more reactive with bromine than their corresponding hydrophobic fractions. Coagulation generally removed more haloacetic acid precursors than trihalomethane precursors. Waters with higher specific ultraviolet absorbance values were more amenable to removal of organic material by coagulation than waters with low specific ultraviolet absorbance values. Experimental evidence suggests that haloacetic acid precursors have a higher aromatic content than trihalomethane precursors.  相似文献   

9.
Multiple linear regression models were used to examine relationships between water quality, treatment, and disinfection byproduct (DBP) formation in Information Collection Rule field data. Finished water models were specified using a cross-validation approach based on data for 225 free chlorine treatment plants. Turbidity, bromide, temperature, alkalinity, total organic carbon, ultraviolet absorbance at 254 nm, pH, chlorine residual, chlorine consumed, and chlorine contact time were employed as independent variables. Important trends within the trihalomethane, dihaloacetic acid, and trihaloacetic acid classes were observed. Bromide was a significant predictor for all DBP species and its influence changed in sign and magnitude with the extent of bromine substitution. A similar pattern followed by alkalinity suggested it plays an important role as an indicator of natural organic matter hydrophobicity and reactivity. Chlorine consumed and organic precursor variables were significant predictors in almost all DBP species models, exhibiting trends opposite to those for alkalinity and bromide. Temperature was the most significant variable in chloroform and chloral hydrate models and its significance declined with increasing bromine substitution within the trihalomethane class. pH had a strong positive influence on chloroform formation, a negative influence on trihaloacetic acid formation, and no influence on dihaloacetic acid formation.  相似文献   

10.
The nature and chlorine reactivity of organic constituents in reclaimed water (tertiary-treated municipal wastewater) before, during, and after recharge into groundwater at the Montebello Forebay in Los Angeles County, CA, was the focus of this study. Dissolved organic matter (DOM) in reclaimed water from this site is primarily a mixture of aromatic sulfonates from anionic surfactant degradation, N-acetyl amino sugars and proteins from bacterial activity, and natural fulvic acid, whereas DOM from native groundwaters in the aquifer to which reclaimed water was recharged consists of natural fulvic acids. The hydrophilic neutral N-acetyl amino sugars that constitute 40% of the DOM in reclaimed water are removed during the first 3 m of vertical infiltration in the recharge basin. Groundwater age dating with 3H and 3He isotopes, and determinations of organic and inorganic C isotopes, enabled clear differentiation of recent recharged water from older native groundwater. Phenol structures in natural fulvic acids in DOM isolated from groundwater produced significant trihalomethanes (THM) and total organic halogen (TOX) yields upon chlorination, and these structures also were responsible for the enhanced SUVA and specific fluorescence characteristics relative to DOM in reclaimed water. Aromatic sulfonates and fulvic acids in reclaimed water DOM produced minimal THM and TOX yields.  相似文献   

11.
High-performance liquid chromatography (HPLC)-size exclusion chromatography (SEC) with ultraviolet absorbance (UVA) and on-line dissolved organic carbon (DOC) detectors has been adapted and optimized under various conditions. An enhanced HPSEC-UVA system employing a modified commercially available DOC detector provides a better understanding of the qualitative and quantitative natural organic matter (NOM) properties in water samples by detecting aromatic and nonaromatic fractions of NOM as a function of molecular weight (MW). The most critical merit of this system is that the DOC detector is readily available and widely used. With only a few modifications, a commercially available TOC analyzer served as a DOC detector, integrated with the HPSEC to measure DOC along with UVA, and provided a specific UVA (SUVA) chromatograph that is useful information for drinking water plant design and operation. Without preconcentration, samples can be analyzed with a small amount of sample, with a DOC detection limit as low as 0.1 mg/L (as DOC).  相似文献   

12.
An increasing number of utilities in the United States have been switching from chlorination to chloramination practices to comply with the more stringent trihalomethane (THM) and haloacetic acid (HAA) regulations. This has important implications for disinfection byproduct (DBP) formation because the reactions of chlorine and monochloramine (NH(2)Cl) with natural organic matter (NOM) are not the same. In this study, iodinated trihalomethane (I-THM) formation from preformed NH(2)Cl and prechlorination (at two chlorine doses and contact times) followed by ammonia addition was compared. A representative bromide/iodide ratio of 10:1 was selected and four bromide/iodide levels (ambient, 50/5 or 100/10, 200/20, and 800/80 [μg/L/μg/L]) were evaluated. The results showed that I-THM formation was generally lower for prechlorination as compared to preformed NH(2)Cl due to the oxidation of iodide to iodate by chlorine. However, while prechlorination minimized iodoform (CHI(3)) formation, prechlorination sometimes formed more I-THMs as compared to preformed NH(2)Cl due to a large increase in the formation of brominated I-THM species, which were formed at much smaller amounts from preformed NH(2)Cl. I-THM concentrations and speciation for the two chloramination scenarios (i.e., preformed NH(2)Cl vs prechlorination followed by ammonia) depended on chlorine dose, contact time, bromide/iodide concentration, and NOM characteristics of the source water (SUVA(254)).  相似文献   

13.
High performance size exclusion chromatography (HPSEC) with ultraviolet absorbance (UVA) detection has been widely utilized to estimate the molecular weight (MW) and MW distribution of natural organic matter (NOM). However, the estimation of MW with UVA detection is inherently inaccurate because UVA at 254 nm only detects limited components (mostly pi bonded molecules) of NOM, and the molar absorptivity of these different NOM constituents is not equal. In comparison, a SEC chromatogram obtained with a DOC detector showed significant differences compared to a corresponding UVA chromatogram, resulting in different MW values as well as different estimates of polydispersivity. The MWs of Suwannee River humic acid (SRHA), Suwannee River fulvic acid (SRFA), and various mixtures thereof were estimated with HPSEC coupled with UVA and DOC detectors. The results show that UVA is not an adequate detector for quantitative analysis of MW estimation but rather can be used only for limited qualitative analysis. The NOM in several natural waters (Irvine Ranch, California groundwater, and Barr Lake, Colorado surface water) were also characterized to demonstrate the different MWs obtained with the two detectors. The results of the SEC-DOC chromatograms revealed NOM constituent peaks that went undetected by UVA. Utilizing online DOC detection, a better representation of NOM MWs was suggested, with NOM displaying higher weight-averaged MW (Mw) and lower number-averaged MW (Mn) as well as higher polydispersivity. A method for estimation of the MWs of NOM fractional components and polydispersivities is presented.  相似文献   

14.
Nitrogen-containing disinfection byproducts (N-DBPs) are potentially toxic. This study assessed the formation of three N-DBPs (dichloroacetonitrile (DCAN), trichloronitromethane (TCNM), and N-nitrosodimethylamine (NDMA)) and one regulated DBP (chloroform) upon adding free chlorine and monochloramine into solutions containing different fractions (hydrophobic, transphilic, hydrophilic, and colloidal) of dissolved organic matter (DOM) isolates (n=17). We hypothesized that N-DBP formation would increase for organic matter enriched in organic nitrogen. Formation potential tests were conducted with free chlorine or preformed monochloramine. Chloramination formed, on average, 10 times lower chloroform concentrations, but 5 times higher DCAN concentrations, as compared with free chlorine addition. The formation of the two halogenated N-DBPs (DCAN and TCNM) increased as the dissolved organic carbon (DOC) to dissolved organic nitrogen (DON) ratio decreased upon adding free chlorine, but the N-DBP formation was relatively constant upon adding monochloramine. NDMA, a nonhalogenated N-DBP, formed on average 0.26 nmol per mg of DOC (4.5 nmol per mg of DON) upon adding monochloramine; no NDMA formation occurred upon adding free chlorine. NDMA formation increased as the DOC/DON ratio decreased (i.e., increasing nitrogen content of DOM). NDMA formation also increased as the amino sugar to aromatic ratio of DOM increased. The results support the hypothesis that DON promotes the formation of N-DBPs.  相似文献   

15.
Dissolved organic matter leached from decomposing organic matter is important in the leaching of nutrients from the root zone of ecosystems, eluviation of metals, and transport of hydrophobic pollutants. The objective of this study was to compare microbial mineralization rates in intact soil cores of various fractions of water-soluble dissolved organic matter. Uniformly 14C-labeled Populus fremontii leaf litter that had decomposed for 1 year was extracted in water and this extract was fractionated into phenolic, humic acid, fulvic acid, hydrophilic acid, and hydrophilic neutral fractions. Fulvic acid comprised 42.1% of C in dissolved organic carbon (DOC) extracted from the litter. These fractions were added to intact cores of soil or sand, and respired 14CO2 was collected. The percentage of labeled substrate C mineralized in soil at the end of 1 year was, in order from least to greatest, hydrophilic acid (30.5), fulvic acid (33.8), humic acid (39.0), whole, unfractionated DOC (43.5), unseparated hydrophilic acid and neutral (44.7), phenolic (63.3), glucose (66.4), and hydrophilic neutral (70.2). In acid-washed nutrient-amended sand that was inoculated with soil microbes, mineralization rates of fulvic acid and glucose were lower. The fractionation appeared to separate the DOC into components with widely different rates of mineralization. Results also supported the ideas that the dissolved humic substance and hydrophilic acid fractions are inherently difficult for microbes to mineralize, and this property can contribute to movement of refractory C in soil and into aquatic ecosystems.  相似文献   

16.
Spatial and temporal distribution of singlet oxygen in Lake Superior   总被引:2,自引:0,他引:2  
A multiyear field study was undertaken on Lake Superior to investigate singlet oxygen ((1)O(2)) photoproduction. Specifically, trends within the lake were examined, along with an assessment of whether correlations existed between chromophoric dissolved organic matter (CDOM) characteristics and (1)O(2) production rates and quantum yields. Quantum yield values were determined and used to estimate noontime surface (1)O(2) steady-state concentrations ([(1)O(2)](ss)). Samples were subdivided into three categories based on their absorbance properties (a300): riverine, river-impacted, or open lake sites. Using calculated surface [(1)O(2)](ss), photochemical half-lives under continuous summer sunlight were calculated for cimetidine, a pharmaceutical whose reaction with (1)O(2) has been established, to be on the order of hours, days, and a week for the riverine, river-impacted, and open lake waters, respectively. Of the CDOM properties investigated, it was found that dissolved organic carbon (DOC) and a300 were the best parameters for predicting production rates of [(1)O(2)](ss). For example, given the correlations found, one could predict [(1)O(2)](ss) within a factor of 4 using a300 alone. Changes in the quantum efficiency of (1)O(2) production upon dilution of river water samples with lake water samples demonstrated that the CDOM found in the open lake is not simply diluted riverine organic matter. The open lake pool was characterized by low absorption coefficient, low fluorescence, and low DOC, but more highly efficient (1)O(2) production and predominates the Lake Superior system spatially. This study establishes that parameters that reflect the quantity of CDOM (e.g., a300 and DOC) correlate with (1)O(2) production rates, while parameters that characterize the absorbance spectrum (e.g., spectral slope coefficient and E2:E3) correlate with (1)O(2) production quantum yields.  相似文献   

17.
In this study, changes in the physical and structural properties of natural organic matter (NOM) during titanium dioxide photocatalytic oxidation process were investigated using several complementary analytical techniques. Potential of the treated water to form trihalomethanes (THMs) and haloacetic acids (HAAs) was also studied. High-performance size exclusion chromatography analysis showed that NOM with apparent molecular weights of 1-4 kDa were preferentially degraded, leading to the formation of lower molecular weight organic compounds. Resin fractionation of the treated water demonstrated that the photocatalytic oxidation changed the affinity of the bulk organic character from predominantly hydrophobic to more hydrophilic. Short chain aldehydes and ketones were identified by mass spectroscopy as one of the key degradation products. The addition of hydrogen peroxide to photocatalysis was found to increase the degradation kinetics but did not affect the reaction pathway, thus producing similar degradation end products. The amount of THMs normalized per dissolved organic carbon (specific THM) formed upon chlorination of NOM treated with photocatalytic oxidation was reduced from 56 to 10 microg/mg. In contrast, the specific HAAs formation potential of the treated water remained relatively unchanged from the initial value of 38 microg/mg, which could be due to the presence of hydrophilic precursor compounds that were formed as a result of the photocatalytic oxidation process.  相似文献   

18.
N-nitrosodimethylamine (NDMA)formation in chloraminated Iowa River water (IRW) is primarily attributed to reactions with natural organic matter (NOM) generally classified as humic substances. Experiments were conducted to determine the contribution of various NOM humic fractions to the NDMA formation potential (NDMA FP) in this drinking water source. NOM was concentrated by reverse osmosis (RO) and humic fractions were obtained by a series of resin elution procedures. Mass balances showed that nearly 90% of the NDMA formation potential could be recovered in the NOM concentrate and in water reconstituted using additions of the various humic fractions. Generally, the hydrophilic fractions tended to form more NDMA than hydrophobic fractions, and basic fractions tend to form more NDMA than acid fractions when normalized to a carbon basis. Overall, the hydrophobic acid fraction was the dominant source of NDMA when both formation efficiency and water composition were considered. The amount of NDMA formed in a sample was found to correlate linearly with an oxidation-induced decrease in specific UV absorbance (SUVA) value at 272 nm. This is consistent with a mechanism in which precursors are formed as the direct consequence of the oxidation of NOM. The NDMA FP estimated using the slope of this relationship and the initial SUVA value compared closely to the value obtained by measuring the NDMA formed in solutions dosed with excess concentrations of monochloramine that presumably exhaust all potential precursor sources. However, the NOMA FP could not be correlated to the SUVA value of the individual humic fractions indicating that the relationship of the NDMA FP to SUVA value is probably a water-specific parameter dependent on the exact composition of humic fractions. It is hypothesized that either specific NDMA precursors are distributed among the various humic fractions or that the humic material itself represents a "generic" nonspecific precursor source that requires some degree of oxidation to eventually produce NDMA. The nonmonotonic behavior of NOM fluorescence spectra during chloramination and lack of correlation between NOM fluorescence characteristics and NDMA formation limited the usage of fluorescence spectra into probing NDMA formation.  相似文献   

19.
Specific UV absorbance (SUVA) is defined as the UV absorbance of a water sample at a given wavelength normalized for dissolved organic carbon (DOC) concentration. Our data indicate that SUVA, determined at 254 nm, is strongly correlated with percent aromaticity as determined by 13C NMR for 13 organic matter isolates obtained from a variety of aquatic environments. SUVA, therefore, is shown to be a useful parameter for estimating the dissolved aromatic carbon content in aquatic systems. Experiments involving the reactivity of DOC with chlorine and tetramethylammonium hydroxide (TMAH), however, show a wide range of reactivity for samples with similar SUVA values. These results indicate that, while SUVA measurements are good predictors of general chemical characteristics of DOC, they do not provide information about reactivity of DOC derived from different types of source materials. Sample pH, nitrate, and iron were found to influence SUVA measurements.  相似文献   

20.
Various natural organic matter (NOM) constituents were evaluated in terms of their biodegradability, disinfection byproduct (DBP) formation potentials, and membrane fouling. The biodegradability of NOM was evaluated with respect to biodegradable dissolved organic carbon (BDOC) and its inhibition control. NOM was divided into (i) colloidal and noncolloidal NOM, using a dialysis membrane with a molecular weight cutoff of 3500 Da and (ii) hydrophobic, transphilic, and hydrophilic NOM constituents, using XAD-8/4 resins. The colloidal, and noncolloidal hydrophilic, NOM were identified as being more problematic than the other components, exhibiting relatively higher biodegradability and reactivity toward DBP formation potential. A higher biodegradability especially can provide a high risk of membrane biofouling, if a membrane is fouled by highly biodegradable NOM. Colloidal, and noncolloidal hydrophilic, NOM constituents were also shown as major foulants of negatively charged membranes due to their high neutral fractions. Filter adsorber (F/A) types of activated carbons were evaluated in terms of removals of NOM, DBP formation potential, and BDOC and were compared to conventional processes and a nanofiltration membrane. The F/A process exhibited a comparatively good efficiency, especially in DBP and BDOC control, but was not so good at removing NOM. This suggests that F/A could potentially be combined with a membrane process to minimize the DBP formation potential and bio-/organic-fouling (i.e., F/A process as a pretreatment for a membrane process).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号