首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of a change in sodium content and thermal history on a leucite composition material produced by a coprecipitation process was studied. Five materials with formulae of (K(1–x ),Na x )2O-Al2O3-4SiO2 (x= 0.0, 0.2, 0.4, 0.6, 0.8) were investigated for differences in phases, thermal expansion, and strength. Strengths of up to 175 MPa were obtained for a leucite composition material (x = 0.0). Sodium was effective in lowering the thermal expansion coefficients of these materials. Leucite was linked to higher flexural strengths, but was present only in those specimens which were sintered at 1200 °C. Leucite was not present in those specimens sintered at 1100 °C or lower. Porosity was present in all specimens sintered at 1000 °C or higher.  相似文献   

2.
Basalt fiber (BF) filled high density polyethylene (HDPE) and co-extruded wood plastic composites (WPCs) with BF/HDPE composite shell were successfully prepared and their mechanical, morphological and thermal properties characterized. The BFs had an average diameter of 7 μm with an organic surfactant surface coating, which was thermally decomposed at about 210 °C. Incorporating BFs into HDPE matrix substantially enhanced flexural, tensile and dynamic modulus without causing a noticeable decrease in the tensile and impact strength of the composites. Micromechanical modeling of tensile properties for the BF/HDPE composites showed a good fit of the selected models to the experimental data. Compared to neat HDPE, BF/HDPE composites had reduced linear coefficient of thermal expansion (LCTE) values. The use of the pure HDPE and BF/HDPE layers over a WPC core greatly improved impact strength of core–shell structured composites. However, the relatively less-stiff HDPE shell with large LCTE values decreased the overall composite modulus and thermal stability. Both flexural and thermal expansion properties were enhanced with BF reinforced HDPE shells, leading to well-balanced properties of core–shell structured material. Cone calorimetry analysis indicated that flammability performance of core–shell structured composites was improved as the BF content increased in the shell layer.  相似文献   

3.
The diglycidyl ether of bisphenol A (DGEBA) epoxy resin system filled with organo clay (OC) and unmodified clay (UC) were processed separately by two different curing agents. Triethylene tetramine (TETA) and Diaminodiphenyl methane (DDM) hardeners were used as curing agents. The nanocomposites were processed by shear mixing at different clay concentrations (1, 2, 3,5 and 10 wt%). The OC and UC were characterized by x-ray diffraction (XRD) technique. The morphology of the nanocomposites was obtained by XRD and Transmission Electron Microscopy (TEM). Bending and Impact tests conducted on these materials revealed that the organo clay filled epoxy resin showed good improvement in property over unmodified clay filled epoxy composites. The mass uptake of the nanocomposites was studied in the acid, base and water mediums. It is observed that the mass uptake in the acid medium is higher than in other mediums. The equilibrium mass uptake in all the mediums for nanocomposites was found to be lower compared to neat epoxy polymer system.  相似文献   

4.
聚合物的热膨胀   总被引:3,自引:0,他引:3  
江磊  沈烈  郑强 《功能材料》2004,35(2):142-144
热膨胀既是聚合物的基本属性,同时也与聚合物结构与性能密切相关。本文在提出聚合物热膨胀产生机制的基础上,介绍了测量聚合物热膨胀的方法,讨论了热膨胀在聚合物基础研究中的应用,着重评述了热膨胀在PTC材料为代表的聚合物基复合材料设计中的重要价值。  相似文献   

5.
It is commonly accepted that the addition of spherical nanoparticles (NPs) cannot simultaneously improve the elastic modulus, the yield stress, and the ductility of an amorphous glassy polymer matrix. In contrast to this conventional wisdom, we show that ductility can be substantially increased, while maintaining gains in the elastic modulus and yield stress, in glassy nanocomposite films composed of spherical silica NPs grafted with polystyrene (PS) chains in a PS matrix. The key to these improvements are (i) uniform NP spatial dispersion and (ii) strong interfacial binding between NPs and the matrix, by making the grafted chains sufficiently long relative to the matrix. Strikingly, the optimal conditions for the mechanical reinforcement of the same nanocomposite material in the melt state is completely different, requiring the presence of spatially extended NP clusters. Evidently, NP spatial dispersions that optimize material properties are crucially sensitive to the state (melt versus glass) of the polymeric material.  相似文献   

6.
The effect of organoclay on the mechanical and thermal properties of woven carbon fiber (CF)/compatibilized polypropylene (PPc) composites is investigated. Polypropylene–organoclay hybrids nanocomposites were prepared using a maleic anhydride-modified PP oligomer (PP-g-MA) as a compatibilizer. Different weight percentages of Nanomer® I-30E nanoclay were dispersed in PP/PP-g-MA (PPc) using a melt mixing method. The PPc/organoclay nanocomposite was then used to manufacture plain woven CF/PPc nanocomposites using molding compression process. CF/PPc/organoclay composites were characterized by different techniques, namely; dynamic mechanical analysis (DMA), fracture toughness and scanning electron microscope. The results revealed that at filler content 3% of organoclay, initiation and propagation interlaminar fracture toughness in mode I were improved significantly by 64% and 67% respectively, which could be explained by SEM at given weight as well; SEM images showed that in front of the tip, fibers pull out during initiation delamination accounting for fracture toughness improvement. Dynamic mechanical analysis showed enhancement in thermomechanical properties. With addition 3 wt.% of organoclay, the glass transition temperature increased by about 6 °C compared to neat CF/PPc composite indicating better heat resistance with addition of organoclay.  相似文献   

7.
The polymer composites composed of graphene foam (GF), graphene sheets (GSs) and pliable polydimethylsiloxane (PDMS) were fabricated and their thermal properties were investigated. Due to the unique interconnected structure of GF, the thermal conductivity of GF/PDMS composite reaches 0.56 W m−1 K−1, which is about 300% that of pure PDMS, and 20% higher than that of GS/PDMS composite with the same graphene loading of 0.7 wt%. Its coefficient of thermal expansion is (80–137) × 10−6/K within 25–150 °C, much lower than those of GS/PDMS composite and pure PDMS. In addition, it also shows superior thermal and dimensional stability. All above results demonstrate that the GF/PDMS composite is a good candidate for thermal interface materials, which could be applied in the thermal management of electronic devices, etc.  相似文献   

8.
9.
10.
X.X. Chu  Z.X. Wu  R.J. Huang  Y. Zhou 《低温学》2010,50(2):84-3397
Polyetheretherketone (PEEK) has been widely used as matrix material for high performance composites. In this work, 30% chopped glass fibers reinforced PEEK composites were prepared by injection molding, and then the tensile, flexural and impact properties were tested at different temperatures. The modulus, strength and specific elongation of glass fibers reinforced PEEK at room temperature, 77 K and 20 K have been compared. And the fracture morphologies of different samples were investigated by scanning electron microscopy (SEM). The results showed a dependence of mechanical properties of glass fibers reinforced PEEK composites on temperature. The coefficient of thermal expansion of unfilled PEEK and glass fibers reinforced PEEK were also investigated from 77 K to room temperature. The results indicated that the thermal expansion coefficient (CTE) of PEEK matrix was nearly a constant in this temperature region, and it can be significantly decreased by adding glass fibers.  相似文献   

11.
《Composites》1981,12(1):33-37
The mechanical behaviour of polystyrene composites containing various percentages of glass microspheres has been investigated over a wide range of temperature. The effect of filler concentration on the elastic and ultimate tensile strength of the composites is reported. The viscoelastic properties of these materials have also been studied, in the temperature range of 60°C to 80°C. In the region of linear viscoelastic response, the presence of the filler has no effect on the shift factors used for constructing the master curve, according to the time/temperature superposition principle.  相似文献   

12.
空心微珠填充聚氨酯泡沫塑料的力学性能   总被引:2,自引:1,他引:1       下载免费PDF全文
对不同密度和不同填充质量比的空心玻璃微珠填充聚氨酯泡沫塑料进行拉、压实验,研究了微珠对复合泡沫塑料力学性能的影响。实验结果表明:复合泡沫塑料拉伸曲线特征与普通泡沫塑料类似,但具有不同于普通泡沫塑料的压缩应力-应变特性;材料密度越大,微珠对胞体壁的增强效果越好;微珠团聚和界面粘结不良将可能导致材料力学性能的下降。根据有限元模拟结果和试件破坏形貌的观察探讨了材料的变形和破坏机制。   相似文献   

13.
This work investigates the effects of the binary modifying agents–organosolv lignin and acrylic acid, on the mechanical and thermal properties of chitosan-filled polypropylene (PP) composites. We analyse the mechanical and the thermal properties of the composites by means of ASTM D 638-91, ASTM D 256, thermogravimetry analysis (TGA) and differential scanning calorimetry (DSC). Tensile strength of the composites decreases upon the addition of chitosan, but Young’s modulus improves. Impact strength is found to increase with the maximum value at 30 php. The chemical modifications do not alter the stress–strain character or the thermal degradation mechanism of the composites considerably; however the results of this study show that the treated composites are found to have better mechanical and thermal properties than untreated composites. Furthermore, the obtained results are comparable to results from previous work. This outcome implies that organosolv lignin could be a potential reagent to partially replace its synthetic counterpart.  相似文献   

14.
Polymer composite materials with vegetable fibers were an attractive field for many industries and researchers, however, these materials required the issues of compatibility between the fibers and the polymeric matrix. This work evaluates the thermal and mechanical properties of Doum-fibers reinforcing a low density polyethylene (LDPE) composite to follow the effect of adding fibers into polymer matrix. Doum-fibers were Alkali treated to clean the fiber surface and improve the polymer/fibers adhesion. The Doum-fibers were compounded in LDPE matrix at various contents and extruded as continuous strands. An enhance on mechanical properties of composites was found, a gain of 145% compared to neat polymer at 30 wt.% fiber loading in Young’s modulus, a gain of 135% in flexural modulus at 20 wt.% fiber loading and a gain of 97% in torsional modulus at 0.1 Hz. Thermal properties were evaluated and the results show a slight decrease with increase of added Doum.  相似文献   

15.
Besides mechanical properties, the dynamic mechanical properties in a sensible range of temperature and rheological properties have to be taken into account for engineering applications. The rising concern towards the reduction in the use of petroleum-based non-renewable resources has led to increasing interests in natural polymer composites filled with natural organic fillers, i. e. they are from renewable and biodegradable sources. This work is focused on the use of biowaste, specifically wood flour as a plasticizer replacement in a rubber compound. Plasticizers (also called softener, extender or process oils) are common additives for polymers with a low molecular weight. An increasing content of a plasticizer usually leads to a decrease in the viscosity of the rubber mixture, and therefore, its processability can be improved. Based on the given fact, the experiment is aimed at the studies of the rheological properties. The scanning electron microscopy results can confirm the compatibility or incompatibility of the biowaste, specifically wood flour with rubber matrix. In the case of a successful replacement for plasticizer with wood flour, we expect a significant reduction in the cost of the mixtures production as well as a reduction in the environmental impact, compared with the petroleum products.  相似文献   

16.
The thermomechanical properties of epoxy filled with two different types of silica nanofillers: spherical nanoparticles and nanofibers were investigated as a function of silica nanofiller aspect ratio and concentration. Results indicated that at room temperature and at 8.74% silica nanofiber concentration (by volume) the thermal conductivity of epoxy increased twofold and coefficient of thermal expansion (CET) decreased by ∼40%. Silica nanofiber filled epoxy showed 1.4 times greater CET and 1.5 times greater thermal conductivity compared to spherical nanoparticle filled epoxy. The significant changes observed in thermomechanical properties of silica nanofiber filled epoxy were attributed to its high aspect ratio by constraining the polymer matrix as well as reducing the phonon scattering due to the formation of a continuous fiber network within the matrix. In addition to being electrically insulating, the improved properties of silica nanofiber filled epoxy make it an extremely attractive material as underfill and encapsulant in advanced electronic packaging industry.  相似文献   

17.
粒子填充聚合物基复合材料导热性能的数值模拟   总被引:5,自引:1,他引:4  
根据电镜照片中观察的微观结构信息,基于两套新设计的算法建立了代表体积元(RVE)模型,基于此模型研究了粒子填充聚合物基复合材料的导热性能与微观结构的关系。通过对电镜照片的处理得到两个参数即稀疏区比重和稀疏区半径,建立了与实际体系相符的具有非均匀粒子分布结构的 RVE模型。制备了氧化铝/高温硫化硅橡胶导热复合材料,并测试了不同填充量下体系的热导率,用以验证模型的有效性。采用有限元方法求解RVE模型得到的热导率预测值与实验值进行对比,结果表明:填料用量在宽范围内预测结果与实验值均吻合很好; 与均匀分布或随机分布相比,存在稀疏区和富集区的非均匀分布的体系具有更高的热导率,这种差异在高填充量下当颗粒间形成导热网链时更为显著;在相同填充量下,不同的粒子空间分布结构可使体系热导率差别很大,是影响体系热导率的关键因素。  相似文献   

18.
Anti-perovskite manganese nitrides Mn3CuN co-doped with Ge and Si show good negative thermal expansion properties at cryogenic temperatures and thus have great potential for cryogenic applications. In this work, Mn3(Cu0.6SixGe0.4?x)N (x = 0.05, 0.1, 0.15) were prepared by reactive sintering under pressure. Their structures, densities, electrical resistivities, thermal conductivities and mechanical properties were studied at room and cryogenic temperatures. The results show that the values of electrical resistivities and thermal conductivities of Mn3(Cu0.6SixGe0.4?x)N (x = 0.05, 0.1, 0.15) are in the range of 2.5–4.3 × 10?6 Ω m and 1.9–3.6 W(m K)?1, respectively. Compression tests indicate the compressive strength and Young’s modulus are about 700 MPa and 110 GPa, respectively.  相似文献   

19.
The preliminary experimental studies on the comparative behaviour of the deformation processes involved in the failure of a commercial, 0.3 mm thick, 18 mm diameter soda-lime-silica glass disks (G) and multilayered glass disk-epoxy (GE) as well as glass disk-epoxy-E-glass fabric (GEF) composite structures are reported. The failure tests were conducted in a biaxial flexure at room temperature. The epoxy was a commercial resin and theE-glass fabric was also commercially obtained as a two-dimensional weave ofE-glass fibres to an area density of about 242 g m−2. The multilayered structures were developed by alternate placement of the glass and reinforcing layers by a hand lay-up technique followed by lamination at an appropriate temperature and pressure. Depending on the number of layers the volume fraction of reinforcement could be varied from about 0.20 for the GE system to about 0.50 for the GEF system. It was observed that the specific failure load (load per unit thickness) was enhanced from a value of about 60 N/mm obtained for the glass to a maximum value of about 100 N/mm for the GE composites and to a maximum of about 70 N/mm for the GEF composite system. Similarly, the displacements at failure (δ) measured with a linear variable differential transformer (LVDT) were also found to be a strongly sensitive function of the type of reinforcement (GE or GEF) as well as the number of layers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号