首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
纳米SiO2分散稳定性能影响因素及作用机理研究   总被引:24,自引:1,他引:23  
通过测定纳米SiO2水悬浮液的Zeta电位和吸光度,探讨了不同pH值、不同表面活性剂种类及浓度对纳米SiO2水相体系分散稳定性的影响,并分析其作用机理.结果表明:Zeta电位与吸光度有良好的对应关系,Zeta电位绝对值越高,吸光度越大,则体系分散稳定越好;pH值、表面活性剂种类及加入量是影响纳米SiO2水相体系分散稳定性的主要因素.pH为9~11之间时,体系Zeta电位绝对值较高,相应分散稳定性较好;非离子、阳离子和阴离子型表面活性剂随浓度变化均可改变体系Zeta电位,从而影响其分散稳定;加入适宜用量3种类型表面活性剂能得到分散稳定的悬浮液体系;若加入阴/非离子表面活性剂复配物,则能进一步提高和改善体系的分散稳定性能.  相似文献   

2.
添加适当的分散剂,考察纳米石墨在极性介质中的分散稳定性。通过粒径大小,Zeta电位以及吸光度等测试,分析分散剂及pH值对纳米石墨的分散稳定性效果的影响。结果表明,在pH值为10~11时,体系的Zeta电位绝对值最大,此时体系最稳定。羟甲基纤维素钠作为分散剂的分散效果最好。  相似文献   

3.
运用液相氧化沉淀法制备了纳米级复合氧化高银分散液.探讨了温度、氧化剂用量、过饱和度、分散剂用量以及末期反应时间对分散液颗粒粒径大小和纯度的影响.得到了产品的最佳制备工艺:采用非离子聚乙烯型DJ2004为分散稳定剂、反应温度60℃、DJ200/AgNO3=0.4、K2S2O8/AgNO3=10、末期反应时间-10min、C(AgNO3)=0.18~0.25mol/L.制备出粉体粒径为20~100nm、含氧化高银70%的纳米氧化高银分散液.  相似文献   

4.
纳米Cu分散稳定性能影响因素及作用机理研究   总被引:3,自引:1,他引:2  
鉴于粉体分散对纳米流体强化传热具有重要意义,通过测定纳米Cu-水悬浮液的Zeta电位和吸光度,探讨了不同pH值、不同分散剂种类及质量分数对纳米Cu-水悬浮液分散稳定性的影响,并分析其作用机理。结果表明:Zeta电位绝对值与吸光度有良好的对应关系,Zeta电位绝对值越高,吸光度越大,则体系分散稳定性越好;pH值、分散剂种类及加入量是影响纳米Cu-水悬浮液分散稳定性的主要因素。pH值为9.5左右时,体系Zeta电位绝对值和吸光度较高,相应分散稳定性较好。CTAB和SDBS能显著提高水溶液中Cu表面Zeta电位绝对值,增大了颗粒间静电排斥力,改善了悬浮液稳定性,而TX-10通过空间位阻在颗粒表面形成良好的水化膜,提高了Cu在水溶液中的分散稳定性。在质量分数为0.1%的纳米Cu-水悬浮液中,TX-10,CTAB,SDBS 3种分散剂加入质量分数分别为0.43%,0.05%,0.07%时,均能得到分散稳定的悬浮液体系。  相似文献   

5.
纳米氧化锌在水介质中的分散性能研究   总被引:1,自引:0,他引:1  
纳米粉体的分散性能对提高分散体系的导热性能具有重要意义,试验选用纳米粒子在水介质中的Zeta电位和水合粒径来表征体系的分散稳定性,探讨不同分散剂种类及其浓度以及不同pH条件对ZnO水悬浮液稳定性的影响,并分析其作用机理.结果表明:Zeta电位与水合粒径有良好的对应关系,Zeta电位绝对值越高,水合粒径越小,表明体系分散稳定越好.pH值、分散剂种类及加入量是影响纳米ZnO水相体系分散稳定性的主要因素,不同的分散剂最佳分散条件不同.在 0.1% ZnO-H2O纳米流体中,在 pH=11.4,加入 0.05%十二烷基苯磺酸钠(SDBS)分散剂,悬浮液的稳定性最佳.  相似文献   

6.
以木薯淀粉为原料,双氧水为氧化剂,制备氧化淀粉粘合剂。研究了不同反应条件下的各种影响因素如催化剂、双氧水用量、p H值、反应温度、反应时间等对产品黏度的影响。得出双氧水制备氧化淀粉的最佳反应工艺条件为:催化剂硫酸铜用量为0.01%,反应p H值7~8,反应温度40~45℃。根据不同的使用需求,适当控制氧化剂双氧水的用量和反应时间,可制备不同黏度规格的产品。  相似文献   

7.
《应用化工》2022,(5):1092-1095
以原硅酸四乙酯(TEOS)作为硅源,使用St?ber法,制备出分布均匀、粒径大小可控的纳米SiO_2颗粒,探讨了氨水用量、改性剂用量、反应温度以及反应时间对其粒径的影响。以二氯二甲基硅烷作为纳米SiO_2的修饰改性剂,采用激光粒度仪和接触角测量仪对纳米SiO_2颗粒粒径和接触角进行了表征。结果表明,St?ber法制备的纳米SiO_2颗粒粒径平均在40 nm,当氨水用量逐渐增加时,纳米SiO_2颗粒粒径逐渐增大;当反应温度逐渐升高时,纳米SiO_2颗粒粒径逐渐减小;当反应时间逐渐增加时,纳米SiO_2颗粒粒径呈现逐渐增大的趋势,后趋于稳定。改性实验结果表明,纳米SiO_2接触角随改性剂二氯二甲基硅烷用量的增加而变大,其接触角在40.9~146.1°范围内可调。当二氯二甲基硅烷的用量为7.5%时,接触角达到最大值146.1°。修饰改性后纳米SiO_2颗粒可减少其团聚,颗粒更加分散均匀,由此实现了通过改性剂加量对纳米SiO_2颗粒表面润湿性的调控。  相似文献   

8.
以原硅酸四乙酯(TEOS)作为硅源,使用St?ber法,制备出分布均匀、粒径大小可控的纳米SiO_2颗粒,探讨了氨水用量、改性剂用量、反应温度以及反应时间对其粒径的影响。以二氯二甲基硅烷作为纳米SiO_2的修饰改性剂,采用激光粒度仪和接触角测量仪对纳米SiO_2颗粒粒径和接触角进行了表征。结果表明,St?ber法制备的纳米SiO_2颗粒粒径平均在40 nm,当氨水用量逐渐增加时,纳米SiO_2颗粒粒径逐渐增大;当反应温度逐渐升高时,纳米SiO_2颗粒粒径逐渐减小;当反应时间逐渐增加时,纳米SiO_2颗粒粒径呈现逐渐增大的趋势,后趋于稳定。改性实验结果表明,纳米SiO_2接触角随改性剂二氯二甲基硅烷用量的增加而变大,其接触角在40.9~146.1°范围内可调。当二氯二甲基硅烷的用量为7.5%时,接触角达到最大值146.1°。修饰改性后纳米SiO_2颗粒可减少其团聚,颗粒更加分散均匀,由此实现了通过改性剂加量对纳米SiO_2颗粒表面润湿性的调控。  相似文献   

9.
利用加压碳化体系制备粒径均一、高分散性纳米碳酸钙材料。考察氢氧化钙浓度、表面活性剂添加量、反应温度、CO2压力对制备纳米CaCO3粒子尺寸和分散程度的影响,采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、Zeta电位和傅立叶变换红外光谱(FT-IR)对制备的纳米碳酸钙粒子进行表征。结果表明,最优加压碳化反应条件是Ca(OH)2质量浓度为2%、表面活性剂添加量为3%(占碳酸钙理论产量的百分比)、反应温度为40℃、CO2压力为6 MPa,所得立方形碳酸钙平均粒径为117 nm,晶型为方解石型碳酸钙。碳化反应加入表面活性剂十六烷基三甲基溴化铵(CTAB)使CaCO3表面形成的正电荷增大至+37.7 mV并高于标准值30 mV,表明制备的CaCO3产品具有良好的分散性且稳定。通过FT-IR和Zeta电位对CTAB改性前后CaCO3纳米粒子进行表征,探讨了CTAB对合成纳米CaCO3分散性的影响机理,为纳米碳酸钙制备提供了一种新的方法。  相似文献   

10.
采用浸渍银浆中平均粒径2~5μm的银粉,通过紫外可见光谱(UV-vis)和Zeta电位测量,最终确定银浆最大的等离子体吸收波长值为320 nm,Zeta电位等电点为pH=7.95。在此基础上详细讨论了溶剂pH值及表面活性剂种类及浓度等因素对浸渍银浆分散稳定性的影响,并探究其分散机理。运用分光光度计和SEM,分析了银粉在浆料中的分散稳定性和微观组织形貌。结果表明:银浆的pH值在7~10范围分散稳定性较高,非离子表面活性剂和阴离子表明活性剂能够提高银浆的分散稳定性。  相似文献   

11.
纳米二氧化硅水性浆料的研制   总被引:4,自引:0,他引:4  
通过分散剂表面改性的方法.应用高速机械搅拌,高剪切砂磨和超声波分散等多种分散手段.制备了亲水型和疏水型两种类型纳米SiO2的水性浆料,通过常温沉降实验、Zeta电位测试以及透射电镜观察.研究了分散剂类型,用量、润湿剂类型.pH值、水性树脂和分散手段等多种因素对纳米SiO2水性浆料分散稳定性的影响。在最佳分散剂.润湿剂、pH值和加入水性树脂的条件下.通过砂磨和超声波分散相结合的手段.制得了分散稳定性良好的纳米SiO2水性浆料。  相似文献   

12.
复配分散剂对ZrO2悬浮液稳定性的影响   总被引:1,自引:0,他引:1  
本实验选用由乳化剂OP(壬基酚聚氧乙烯醚)与CPB(溴代十六烷基吡啶)所组成的复配分散剂对纳米ZrO2 进行分散,制备ZrO2 悬浮液,并讨论了复配分散剂两组分用量比、pH值、悬浮液中的离子强度等对悬浮液稳定性的影响.结果表明:加入复配分散剂得到的ZrO2 悬浮液,具有更好的分散稳定性;当OP与CPB用量比为1∶ 1,复配分散剂用量为ZrO2 含量的6%时,能使ZrO2 粉末具有良好的分散,在pH=1.8时,悬浮液颗粒粒径最小,中位粒径达到178 nm.实验中还发现,添加复配分散剂后悬浮液等电点由原来的pH= 6右移到pH=13附近,另外,增加悬浮液中的离子强度,使Zeta电位值降低,粒径增大,但离子强度大小并不会影响ZrO2 的等电点,其等电点仍保持在13左右.  相似文献   

13.
方淼  唐强  陈坤  徐保明 《化工进展》2014,33(10):2748-2752,2784
以苯乙烯(St)、马来酸酐(MA)、丙烯酸(AA)为单体,采用溶液聚合法合成三元共聚物,并用正丁醇作酯化剂,对其进行部分酯化,制备出高分子分散剂St-MA-AA部分酯化物。将此分散剂应用于酞菁蓝颜料表面改性处理上,讨论了单体摩尔配比、分子量分布等因素对颜料平均粒径、Zeta电位、分散性(DE)和相对着色力(Kr)的影响。结果表明,St、MA、AA单体最佳摩尔比为1∶1∶0.5时,自制分散剂St-MA-AA部分酯化物与市售分散剂SMA1440相比,颜料的平均粒径降低了15%,Zeta电位上升了13%,离心稳定性升高了77%,着色力增加了9%,分散效果明显更好。  相似文献   

14.
木薯淀粉催化氧化研究   总被引:1,自引:0,他引:1  
以Cu^2+为催化剂、双氧水为氧化剂催化氧化木薯淀粉,考察了反应pH值、催化剂用量、反应时间和反应温度对氧化反应的影响。实验结果表明:在固定pH=7的条件下,氧化淀粉羧基含量较多的最佳工艺条件为:反应温度50℃,双氧水用量10%,反应时间4h,催化剂用量0.04%。在最佳工艺条件下,可制得羧基含量达0.9%左右的氧化木薯淀粉。  相似文献   

15.
高能球磨法制备纳米赤铁矿矿物颜料水分散体   总被引:1,自引:0,他引:1  
杨群  陈薇  陆大年  刘爱莲  柴红梅  宋伟 《应用化工》2013,42(7):1265-1267
以赤铁矿为原料,马来酸酐-醋酸乙烯酯共聚物PMV为分散剂,采用高能球磨法制备纳米级赤铁矿颜料水分散体,讨论了研磨时间、研磨介质以及分散剂用量等对分散体的粒径和Zeta电位的影响。结果表明,采用行星式球磨仪在球磨机转速为500 r/min,球磨时间为5 h,分散剂用量为0.25 g/g颜料,研磨介质为直径2 mm和0.5 mm锆珠的质量比为3∶2时,能获得粒径大小为230 nm的赤铁矿颜料水分散体,具有一定的粒径分散稳定性。  相似文献   

16.
白福顺 《精细化工》2011,28(12):1164-1168,1172
采用环氧丙基三甲基氯化铵(ETA),通过界面反应对苯乙烯-马来酸酐共聚物(SMA)进行改性,制备高分子分散剂(SMG)。红外光谱测试结果表明,ETA和SMA中酸酐发生反应,生成了酯键,当ETA对SMA摩尔比为1.3、对甲苯磺酸占SMA总质量的14%、反应时间6 h、反应温度78℃时,SMG阳离子化度为30.96%。应用实验表明,SMG对炭黑的分散效果明显优于SMA,当SMG阳离子度大于14%、pH=9、SMG对颜料的质量分数为7%时,制备炭黑分散体粒径为170 nm,炭黑分散体热稳定性较佳,60℃处理24 h,粒径变化率仅为3.6%。所制备分散体在pH=3时,炭黑Zeta电位为+28.61 mV,当pH>6.5后,Zeta电位变为负值,表现出两性特征。  相似文献   

17.
采用薄膜分散法制备格列齐特脂质体,以粒径和包封率为考核指标,通过单因素实验和正交实验优化制备条件,测定最优条件制备格列齐特脂质体的平均粒径和包封率。确定最优制备条件为:药脂比1∶10(g∶g)、超声时间10min、成膜温度60℃、缓冲液pH值6。所制备脂质体的平均粒径为(108.3±12.4)nm、包封率为(72.19±3.6)%、平均Zeta电位为(-40.8±2.3)mV,且在4℃下保存稳定性好。电镜照片显示,所制备脂质体圆整度好、粒径均一、无粘连。表明采用薄膜分散法制备格列齐特脂质体工艺稳定,质量可控。  相似文献   

18.
吴文兵  田高明 《广州化工》2012,40(9):126-128
采用共沉淀法和溶胶-凝胶法制备了磁性Fe3O4纳米粒子及核壳型Fe3O4@SiO2复合微球,利用红外光谱(FTIR)技术测定了微球表面基团,证明了SiO2确实在Fe3O4纳米粒子的表面形成了包覆层。通过正交试验设计,利用激光粒度仪测量的微球粒径为指标,考察TEOS与磁性微球的体积比、反应温度、反应时间和乙醇浓度四因素对微球粒径的影响。结果表明TEOS与磁性微球的体积比为2、反应温度为80℃、反应时间为4 h,乙醇浓度为80%是制备大粒径Fe3O4@SiO2磁性复合微球的适宜条件。  相似文献   

19.
采用湿式双氧水氧化法对丁苯橡胶生产废水进行处理,考察了反应温度、反应时间、双氧水用量及体系pH值等对废水中化学需氧量去除效果的影响,并与Fenton法进行了处理效果的对比。结果表明,采用湿式双氧水氧化法时,在常压、双氧水用量4 mL/L且一次性加入、反应温度95℃、搅拌转速600 r/min、反应时间60 min、体系pH值为原水的6~7(不调)的条件下,丁苯橡胶生产废水中化学需氧量的去除率达67%以上,是Fenton法达到同样处理效果时双氧水用量的1/2,且无二次污染。  相似文献   

20.
以炭黑为原料,通过溶胶-凝胶法制备γ-甲基丙烯酰氧基丙基三甲氧基硅烷包覆的炭黑,再利用硫醇-烯点击反应在包覆炭黑表面接枝3-巯基-1-丙磺酸钠得到自分散碳黑。通过TEM、FESEM、接触角、粒径和Zeta电位等手段对所得产物进行表征,确定了制备Lyocell纤维用自分散碳黑最佳工艺条件,所得改性后的炭黑在NMMO溶液中具有良好的自分散性能,同时还具有较高的耐热稳定性和离心稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号