首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用芳纶浆粕、玻璃纤维、硅灰石纤维和钛酸钾晶须多纤维混杂增强制备重型汽车制动器摩擦材料.利用XD-MSM型定速摩擦试验机,考察了摩擦材料的摩擦系数和磨损率随温度变化的情况,并且通过扫描电镜观察了摩擦材料在不同温度下磨损后的表面形貌,分析其摩擦磨损机理.研究结果表明,所研制的摩擦材料具有足够的机械性能和优异的摩擦磨损性能,热衰退小、恢复性能好、耐磨损,可满足重型汽车制动性能的要求.材料在中高温下主要是磨粒磨损和热疲劳磨损,同时伴随着粘着磨损.  相似文献   

2.
A new composite brake material was fabricated with metallic powders, barium sulphate and modified phenolic resin as the matrix and carbon fiber as the reinforced material. The friction, wear and fade characteristics of this composite were determined using a D-MS friction material testing machine. The surface structure of carbon fiber reinforced friction materials was analyzed by scanning electronic microscopy (SEM). Glass fiberreinforced and asbestos fiber-reinforced composites with the same matrix were also fabricated for comparison. The carbon fiber-reinforced friction materials (CFRFM) shows lower wear rate than those of glass fiber- and asbestos fiber-reinforced composites in the temperature range of 100°C-300°C. It is interesting that the frictional coefficient of the carbon fiber-reinforced friction materials increases as frictional temperature increases from 100°C to 300°C, while the frictional coefficients of the other two composites decrease during the increasing temperatures. Based on the SEM observation, the wear mechanism of CFRFM at low temperatures included fiber thinning and pull-out. At high temperature, the phenolic matrix was degraded and more pull-out enhanced fiber was demonstrated. The properties of carbon fiber may be the main reason that the CFRFM possess excellent tribological performances.  相似文献   

3.
杨博  王玉林  黄远  刘弘  蒋云 《材料导报》2003,17(11):82-84,22
用真空浸渍法制备出了超高分子量聚乙烯纤维/有机玻璃(即UHMWPE/PMMA)复合材料,并研究了其力学性能和摩擦磨损性能。实验证明,UHMWPE/PMMA复合材料具有优良的力学性能和摩擦磨损性能。纤维表面处理可以改善复合材料的力学性能。三维编织纤维增强的复合材料的磨损量远小于长纤维增强的复合材料的,但其摩擦系数没有显著变化。  相似文献   

4.
In the present work, friction material composites were proposed to be used as automotive friction materials. The composites were reinforced by agricultural fibres of corn, palm, and sugar bars. The conventional friction materials based on asbestos cause serious lung diseases and being cancerous potential. The aim of the present work is to replace them by the proposed composites because they are environmentally friendly friction material for brake lining and clutch facings. Agricultural wastes of sugar bars, corn and palms fibres were prepared to obtain fibres of length less than 5 mm. The fibre materials were mixed by carbon, barium sulfate, silica, metallic powders and phenol formaldehyde. The proposed composites were pressed in the die at 105°C temperature. The produced specimens were subjected to machining processes to obtain the cylindrical form of 8 mm diameter. Experiments were carried out using test rig designed and manufactured to measure both friction and wear. It consists of a rotating hollow flat disc made of carbon steel, with an outside diameter of 250 mm and 16 mm thickness. The experiments investigated the effect of agriculture fibre wastes (corn, sugar bars, and palms fibres) on friction coefficient and wear. Wear mechanisms of the proposed composites were characterized by scanning electronic microscopy. The tribological properties of the proposed composites materials were compared to three commercial brake linings. Based on the experimental results it was found that, addition of agriculture fibre wastes (corn, sugar bars, and palms fibres) to composites materials increased friction coefficient and decreased wear. Friction coefficient slightly increased, while wear drastically decreased with increasing fibres content. The maximum friction value (0.58) was obtained by composites containing 30 wt.% iron and 25 wt.% sugar bar fibres. The corn fibres were more compatible with aluminum powder where it gave the highest friction coefficient and relatively lower wear compared to other composites. Wear resistance of the tested composites containing bunches and aluminum represented the lowest values among composites containing corn and bunches fibres. The lowest wear values were observed for composites containing 25 wt.% corn fibres and 30 wt.% aluminum and composites containing 20–25 wt.% sugar bar fibres.  相似文献   

5.
The HA-based composites reinforced with multi-component fibers were prepared by hot pressing. The friction properties of the composite at different temperatures were investigated by a block-on-disc tester. The results show that the addition of Cu has a significant positive effect on the friction and wear behaviors of HA-based composites. The improvements in the friction and wear properties of HA-based composites depend on the formation of an interfacial layer. The plastic deformation and the mending effect of Cu benefit the formation of the interfacial layer. The wear mechanism of the composites changes from the delamination and abrasive wear to the adhesive wear with increasing Cu.  相似文献   

6.
The friction and wear behavior of high performance polyimide (PI) and its composites reinforced with short cut fibers such as carbon fiber, glass fiber and quartz fiber was comparatively evaluated under dry sliding and water-lubricated condition, aiming at selecting matching materials for the pumps of pure water power transmission. The wear mechanisms of the composites under the two different sliding conditions were also comparatively discussed, based on scanning electron microscopic examination of the worn composite and steel counterpart surfaces. As the results, the PI composites reinforced with carbon fiber have the best mechanical and tribological properties compared with glass fiber and quartz fiber. PI composites sliding against stainless steel register lower friction coefficients and wear rates under water-lubricated condition than under dry sliding though the transfer of PI and its composites was considerably hindered in this case. PI and its composites are characterized by plastic deformation, micro cracking, and spalling under both dry-and water-lubricated sliding. Such plastic deformation, micro cracking, and spalling is significantly abated under water-lubricated condition. The glass and quart2 fibers were easily abraded and broken when sliding against steel in water environment, the broken fibers transferred to the mating metal surface and increase the surface roughness of mating stainless steel. This is probably the cause of the increased wear rate of glass fiber and quartz fiber PI composites in this case.  相似文献   

7.
短碳纤维增强铜基复合材料的摩擦磨损性能研究   总被引:1,自引:0,他引:1  
采用冷压烧结工艺制备了短碳纤维增强铜基复合材料,考察了该复合材料的干摩擦磨损性能.讨论了短碳纤维含量、载荷、转速等对复合材料摩擦性能的影响.结果表明:复合材料的耐磨性能明显优于基体材料;随着碳纤维含量的增加复合材料的耐磨性能进一步提高;随载荷和转速的提高,摩擦系数和磨损量也随之增加;复合材料由纯铜的粘着磨损转变为剥层磨损,并均伴有一定的氧化磨损.  相似文献   

8.
Use of thermoplastic composite material for load bearing components is increasing due to economical processing of complicated shapes in large quantities. Addition of fibre improves the strength and modulus of composites. Although the tribo-behaviour of thermoplastic composites were investigated, the friction and wear mechanisms are not yet fully understood. Friction and wear behaviour of injection unfilled Nylon 66, glass fibre reinforced Nylon 66 and carbon fibre reinforced Nylon 66 is investigated under dry sliding conditions. Tests were conducted at different normal loads and sliding velocities at room temperature. Coefficient of friction, wear loss and heat generation during the wear tests were quantified. Presence of fibre affects coefficient of friction and wear resistance of Nylon 66 matrix composites. The formation and stability of the transfer films affects the wear resistance. The rise in temperature during sliding was also calculated and also measured. The contact temperature rise is influenced by the composition which in turn influences the fibre adhesion and thereby the wear resistance. Glass fibre reinforced Nylon exhibited the lowest wear rate among the materials investigated. Both adhesive and abrasive wear mechanisms were observed in polymer matrix composites.  相似文献   

9.
为研究碳纤维对Al1O3f/ZL109复合材料摩擦磨损性能的影响,进一步提高金属基体的摩擦磨损性能,利用液态模锻法制备了(Cf,Al2O3f)/ZL109复合材料,并研究了该材料的摩擦磨损性能.结果表明:各种(Cf,Al2O3f)/ZL109复合材料的磨损量均随载荷的增加而增大,但复合材料的磨损量均低于ZL109基体,且在总纤维体积分数为12%的复合材料中,(4?,8%Al2O3f)/ZL109复合材料具有最低的磨损量;各种(Cf,Al2O3f)/ZL109复合材料的摩擦因数均随载荷的增加而减小.(Cf,Al2O3f)/ZL109复合材料的耐磨性由碳纤维与氧化铝纤维性能及基体共同决定.  相似文献   

10.
For many technical applications friction and wear are critical issues. Reinforced polymer-matrix composites are widely used under vibrating contact condition in various automotive and aerospace applications as well as in structural engineering. In this paper, the friction and wear of bulk epoxy and unidirectional carbon fiber reinforced epoxy composite have been investigated under reciprocating sliding against either alumina or stainless steel balls in ambient air. The effect of sliding direction with respect to the long and unidirectional carbon fibers has been studied. We demonstrate that the carbon fiber reinforcement greatly improves the tribological properties of the thermoset epoxy: it reduces the coefficient of friction and the debris formation. It was found that on sliding in the anti-parallel direction a more significant degradation takes place than in the parallel direction. The coefficient of friction measured on bulk epoxy sliding against either stainless steel or alumina is around 0.65, whereas the coefficient of friction measured on epoxy reinforced with carbon fibers is significantly lower, namely down to 0.11. It was found that sliding with a stainless steel ball in a direction parallel to the fiber orientation results in a lower coefficient of friction than sliding in anti-parallel direction. The reduced coefficient of friction is largely influenced by the carbon fiber reinforcement due to the auto-protecting film formed as a paste in the contact area and along the wear track edges. The relationship between friction and degradation of the composite material including surface wear and debris formation are discussed based on an in-depth analysis of the worn surfaces by optical and scanning electron microscopy, micro-Raman spectroscopy, and white light interferometry.  相似文献   

11.
The use of eco‐materials on the basis of natural fibre reinforced polymer composites has found its way to many applications. In the automobile sector, the use of such composites has long been established for applications in the car interior. The use of natural fibre reinforced composites for braking applications has however not been confirmed yet. In this study the use of flax fibres as a candidate reinforcement substitution for glass or even the carcinogenic asbestos fibres has been investigated. Typical frictional materials such as alumina, iron and brass particulates have been used together with graphite as a lubricant. Epoxy resin was used as the binding matrix. Results show frictional behaviours comparable with commercially available brake linings at acceptable wear rates.  相似文献   

12.
《Materials Letters》2005,59(2-3):175-179
The artificial joint acetabular material ultrahigh molecular weight polyethylene (UHMWPE) was reinforced with carbon fibers (CF) in different contents. The effects of CF content on hardness and tribological properties of the materials were studied. The morphologies of wear surfaces were examined with a Scanning Electron Microscope (SEM). The results show that the hardness and wear resistance of CF-reinforced UHMWPE composites increased with CF content; the friction coefficients under distilled water lubrication were decreased greatly by the addition of CF; that adherence, plowing, plastic deformation and fatigue wear are dominant for the UHMWPE under dry sliding, and that abrasive wear and drawing out of CF from the wear surface of the composites are dominant for the CF-UHMWPE composites under both dry and distilled water lubrication conditions.  相似文献   

13.
Friction and wear behaviour of Kevlar fabrics   总被引:4,自引:0,他引:4  
Experimental results of a number of tribological tests carried out on aramid woven fabrics are presented in this paper. Kevlar Ht, Kevlar 29 and Kevlar 49 aramid plain fabrics were employed in this work. The friction and wear phenomena of the fabrics were investigated, considering both fabric-fabric and metal-fabric interaction. From the experimental data, the evolution of parameters such as static and dynamic friction coefficients, dissipated energy, volume loss of the material, wear rate, specific wear and wear strength were studied. Moreover, values of the static force needed to pull out a single fibre from the woven fabric were measured. All these data are important for the numerical modelling of impact on such materials. In fact, experimental findings on yarn failure mechanisms show that apart from tensile rupture, failure modes such as cutting, shearing and fibre degradation take place in fabrics subjected to the ballistic impact of low-and medium-calibre ammunition.  相似文献   

14.
利用树脂传递模塑(RTM)工艺制备了三维编织炭纤维/环氧(C3D/EP)复合材料.采用MM-200型摩擦磨损试验机研究了该材料润滑条件下的摩擦磨损性能,探讨了载荷及滑动速度等外界因素的影响;并采用XL30 ESEM电子显微镜观察磨损表面形貌,分析了其磨损机理.结果表明,润滑条件下复合材料的摩擦磨损性能远优于干摩擦,且磨合期较短;随着载荷的增加,复合材料的摩擦系数和比磨损率降低,但滑动速度对摩擦磨损性能的影响很小;润滑条件下的磨损机理主要是磨粒磨损.  相似文献   

15.
用碳纤维填充尼龙1010制备了碳纤维增强尼龙复合材料,并对碳纤维增强尼龙复合材料的力学性能和摩擦学性能进行了实验研究。力学实验结果表明:碳纤维增强使尼龙复合材料的拉伸强度、表面硬度增大,碳纤维增强尼龙材料的拉伸强度在20%碳纤维含量时达到最大值;碳纤维表面处理对尼龙复合材料的拉伸强度有很大影响,碳纤维表面氧化处理提高了碳纤维增强尼龙复合材料的拉伸强度。摩擦磨损实验表明:碳纤维增强尼龙复合材料的摩擦系数和磨损率与其拉伸强度和硬度有密切关系。随着拉伸强度和硬度的提高,尼龙复合材料摩擦系数和磨损率降低;摩擦系数和磨损率与拉伸强度具有反比关系,与材料硬度具有二次方程关系,与碳纤维填充量之间存在负指数变化规律。   相似文献   

16.
采用RTM工艺制备了不同纤维体积比的三维编织碳/环氧(C3D/EP)复合材料。采用MM-200摩擦磨损试验机对其摩擦磨损特性进行了研究,并对C3D/EP复合材料的磨损机理进行了分析。结果表明,纤维体积比载荷和滑动速度对复合材料的摩擦系数和磨痕宽度均有明显的影响;C3D/EP复合材料的磨损机理主要为疲劳磨损和粘着磨损,当载荷或速度较小时,以疲劳磨损为主,反之则以粘着磨损为主。  相似文献   

17.
纤维及晶须增强PTFE复合材料的摩擦磨损性能研究   总被引:7,自引:0,他引:7  
利用MHK-500型环-块磨损试验机,对炭纤维,玻璃纤维及钛酸钾(K2Ti6O13)晶须增强聚四氟乙烯(PTFE)复合材料在干摩擦条件下与GCr15轴承钢对磨时的摩擦学性能进行了较为系统的研究,并利用扫描电子显微镜(SEM)和光学显微镜对其磨屑和摩擦表面进行了观察。结果表明,炭纤维,玻璃纤维及K2Ti6O13晶须虽增大了PTFE的摩擦系数,但均可将PTFE的磨损量降低2个数量级,其中玻璃纤维的减磨效果最好,K2TiO13晶须的减磨效果最差,由于K2TiO13晶须的承载能力较差,致使K2Ti6O13晶须增强PTFE复合材料的磨损表面发生了明显的挤压变形,因而该复合材料具有较高的摩擦和磨损。  相似文献   

18.
C/C刹车材料的摩擦磨损性能与机理   总被引:9,自引:1,他引:8  
简要介绍了C/C复合材料在刹车领域的应用,综述了几十年来人们以C/C刹车材料摩擦磨损性能与机理的研究结果,对C/C复合材料的摩擦磨损特征和影响摩擦磨损性能的一些因素作了介绍。  相似文献   

19.
《Composites》1993,24(4):347-353
The influence of three thermosetting matrix resins — epoxy, polyester and poly(vinylbutyral)-modified phenolic — on the sliding wear of glass woven roving reinforced polymer composites under dry conditions has been investigated. Amongst the three composites, glass/phenolic composites exhibit the highest mechanical properties whereas the highest wear resistance (minimum specific wear rate) is offered by glass/epoxy composites. The critical velocity, at which the specific wear attains a minimum value, is higher for glass/polyester composite than for the other two composites. The lowest coefficient of friction has been observed in glass/phenolic composites at all sliding velocities.  相似文献   

20.
采用化学气相渗透法(CVI)制备了二维碳纤维增强碳化硅(C/SiC)陶瓷基复合材料. 基于耦合应力等效模拟系统的开发, 采用摩擦扭矩的变化表征传动过程的摩擦磨损性能. 研究了以传动为背景的高载荷、低转速摩擦磨损行为及机理. C/SiC复合材料以其较低的摩擦扭矩、低的磨损率特别是在高载荷下的较小变形验证了良好的耐磨特性以及承载能力. 相同条件下其磨损率只有Ti合金的1/10~1/20. 低转速下磨损机理以磨粒磨损为主, 高载荷没有引起表面热裂纹.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号