首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为研究高温合金Inconel 625车削过程中锯齿形切屑的产生对颤振的影响,本文通过有限元软件对车削刀具、机床主轴等部件进行模态仿真,获取对应的模态频率;进行不同切削参数的车削试验,采集加速度信号并进行频域分析以获取其FFT功率谱。通过超景深显微镜观察切屑形态,并计算不同切削参数下的切屑锯齿化频率。对比仿真和试验结果发现:当切屑锯齿化频率接近于车床某部件的主振频率时,产生了较大的颤振峰值,这说明锯齿形切屑的产生会诱导切削颤振发生,对切削过程稳定性产生了不利的影响。  相似文献   

2.
Self-excited vibration, or chatter, is an important consideration in machining operations due to its direct influence on part quality, tool life, and machining cost. At low machining speeds, a phenomenon referred to as process damping enables stable cutting at higher depths of cut than predicted with traditional analytical models. This paper describes an analytical stability model for milling operations which includes a process damping force that depends on the surface normal velocity, depth of cut, cutting speed, and an empirical process damping coefficient. Model validation is completed using time domain simulation and milling experiments. The results indicate that the multiple degree of freedom model is able to predict the stability boundary using a single process damping coefficient.  相似文献   

3.
In this paper, we propose a practical texture design on the tool flank face for suppressing chatter vibration and flank adhesion. To avoid chatter vibration during cutting, the process damping phenomena can be utilized, where the tool flank face contacts the surface of a finished workpiece to provide a damping effect. As a new technology for an effective process damping, the tool flank texture-assisted technique has been proposed, and its excellent performance in suppressing chatter vibration has been demonstrated. However, issues that can lead to adhesion and tool damage pose challenges from a practical viewpoint. To overcome such issues, this paper proposes new texture geometries that improve the practical performance: parallel line type, vertical line type, and dot type. The results of a series of finite element analyses showed that the effectiveness of process damping depends on the vibration amplitude and wavelength. The proposed flank textures were fabricated on tool flank faces, and turning tests were carried out. The experimental results showed that the proposed tool is stabler than the conventional untextured tool and that it can more effectively improve the critical cutting speed, reduce the vibration amplitude, and decrease the surface roughness after cutting. With the appropriate design of the texture distance, adhesion and tool damage were hardly observed, and a stable and practical cutting could be realized.  相似文献   

4.
深孔加工在航空发动机制造过程中广泛存在,由于其刚性弱,静态让刀量大,导致加工颤振和刀具磨损严重,使得其加工质量难以得到保证。超声振动切削作为一种特种切削加工手段,具有降低切削力,提高系统刚性和抑制加工颤振等优势。将超声振动应用于深孔镗削,进行了断屑条件验证,孔径误差测量,已加工表面粗糙度测量以及表面形貌观测等试验。试验结果表明,超声振动镗削能够有效缓解深孔镗削过程中的堵屑问题,减小孔径误差和表面粗糙度,抑制切削颤振,从而改善深孔镗削加工质量。  相似文献   

5.
以外圆车削实验为依据,建立加工过程中刀具振动的非线性动力学模型,并采用数值分析方法,研究切削力中的动态分量对切削颤振的影响.结果表明,随速度变化的切削力分量对颤振幅值影响较小,而且会在短时间内被系统内的结构阻尼所衰减.而与加速度成非线性关系的切削力分量对颤振的影响却很显著,而且加速度系数有临界值存在,当超过这个临界值后,颤振的理论幅度将急剧增大.  相似文献   

6.
Ultrasonic elliptical vibration cutting of titanium alloy Ti–6Al–4V is investigated in this research. Because products made of Ti–6Al–4V alloy are usually designed for possessing low-rigidity structures or good-quality cut surfaces, machining requirements such as low cutting forces and slow rate of tool wear need to be fulfilled for realization of their precision machining. Therefore, the ultrasonic elliptical vibration cutting is applied as a novel machining method for those products. Machinability of Ti–6Al–4V alloy by the ultrasonic elliptical vibration cutting with cemented carbide tools is examined to figure out suitable cutting conditions for precision machining of Ti–6Al–4V alloy. As experimental results, generated chips, cutting forces, and profiles of cut surfaces are indicated. A forced vibration problem occurred due to the segmented chip formation, which is also well-known in the ordinary non-vibration cutting. Therefore, characteristics of the forced vibration due to the chip segmentation are investigated in this research. Through the experiments, it is found that the frequency and magnitude of the forced vibration have relation with the average uncut chip thickness and cutting width. Especially, it is found that the averaging effect can suppress the forced vibration, i.e. the chip segmentation tends to occur randomly over the large cutting width, and hence the force fluctuations with random phases tend to cancel each other as the cutting width increases relatively against the average uncut chip thickness. Based on the investigations, a new practical strategy to suppress the forced vibration due to chip segmentation is proposed and verified. Using the proposed method significantly decreased cutting forces and good quality of surfaces are obtained when the forced vibration is suppressed compared to the ordinary non-vibration cutting results. Therefore, the results suggest that the precision machining can be realized without sacrificing the machining efficiency by increasing the width of cut and decreasing the average uncut chip thickness.  相似文献   

7.
An experimental investigation on finish intermittent turning of UNS M11917 magnesium alloy under dry machining is presented. The objective of the study is the analysis of the chip morphology, surface quality and temperature when varying cutting conditions. The intermittent cutting process is analysed using three different workpieces (one continuous and two discontinuous). The experimental plan is based on full factorial designs. Main results of the investigation include the identification of the feed rate as the most important parameter to explain the surface roughness, while no clear influence was found for the cutting speed and slot width. The maximum temperature measured on the tool during the tests was below 50 °C in all of the tests. These low temperature values are explained by the low machining times, depths of cut and cutting speeds used. Thus, for the range of the cutting parameters tested, finish operations can be performed using dry machining under safe conditions. In addition, it was identified that the increase of the depth of cut and feed rate led to higher maximum temperatures, while the increase of the slot width led to lower values. Finally, the morphology of the chips can be classified as segmented chips, including the arc, elemental and spiral chips. Thus, in terms of machining, these chips can be considered as favourable, but, in terms of ignition, these chips are more likely to ignite.  相似文献   

8.
Based on the software ABAQUS/Explicit, a finite element (FE) model for orthogonal cutting was established. The FE model was validated by comparing the cutting forces and serrated degree of chips obtained by orthogonal cutting experiments under the cutting speeds 40, 80, 120, and 160 m/min. Based on the developed FE model, the influence of thermal conductivity on the degree of chip segmentation and the adiabatic shear localization were investigated. Furthermore, the plot contours on undeformed shape of cutting simulation was used to investigate the temperature distribution, and the high temperature zone was identified, which can help enhance the understanding of the serrated chip formation. Finally, cracks located in the adjacent segments of chips were observed. The results show that with the increase in thermal conductivity, the degree of adiabatic shear decreases. It can be concluded that the poor thermal conduction performance should be primarily responsible for the formation of serrated chips during machining Ti-6Al-4V alloy. Due to the high temperature at contact surface between cutting tool and workpiece, the increasing of cutting speed facilitates the formation of serrated chips during machining.  相似文献   

9.
A higher machining ability is always required for NC machine tools to achieve higher productivity. The self-oscillated vibration called “chatter” is a well-known and significant problem that increases the metal removal rate. The generation process of the chatter vibration can be described as a relationship between cutting force and machine tool dynamics. The characteristics of machine tool feed drives are influenced by the nonlinear friction characteristics of the linear guides. Hence, the nonlinear friction characteristics are expected to affect the machining ability of machines. The influence of the contact between the cutting edge and the workpiece (i.e., process damping) on to the machining ability has also been investigated. This study tries to clarify the influence of the nonlinear friction characteristics of linear guides and ball screws and process damping onto milling operations. A vertical-type machining center is modeled by a multi-body dynamics model with nonlinear friction models. The influence of process damping onto the machine tool dynamics is modeled as stiffness and damping between the tool and the workpiece based on the evaluated frequency response during the milling operation. A time domain-coupled simulation approach between the machine tool behavior and the cutting forces is performed by using the machine tool dynamics model. The simulation results confirm that the nonlinear frictions influence the cutting forces with an effect to suppress the chatter vibration. Furthermore, the influence of process damping can be evaluated by the proposed measurement method and estimated by a time domain simulation.  相似文献   

10.
In this paper, the morphology and micro-mechanism of chip formation during high-speed machining aluminum alloy 7050-T7451 is investigated based on the combination of dislocation theory and plastic deformation theory. Experiments of quick stop stoppage for turning and special method (Buda) for milling process were carried out in order to obtain shear angle in different cutting speeds. The results show that effective flow stress and temperature in front edge zone is higher and more concentrated than that in other deformation zones. The shear front-lamellar structure was observed and analyzed in the front edge zone which influences the chip formation directly. The influence of cutting speed on chip formation was analyzed by simulation and experiments. Cutting speed is an important factor affecting the morphology evolution and chip formation. When the cutting speed is below 1500 m/min, the concentration of shear stress and the shear front-lamella structure of cutting deformation are more remarkable and easier for forming continuous ribbon chips. With the cutting speed increase, the ribbon chip transforms into serrated chip when a critical cutting speed (2500 m/min) is reached. Finally, microscopic mechanism of chip formation has been revealed and critical condition of the shear front—the layer structure formation—has been determined.  相似文献   

11.
The micro end milling uses the miniature tools to fabricate complexity microstructures at high rotational speeds. The regenerative chatter, which causes tool wear and poor machining quality, is one of the challenges needed to be solved in the micro end milling process. In order to predict the chatter stability of micro end milling, this paper proposes a cutting forces model taking into account the process nonlinearities caused by tool run-out, trajectory of tool tip and intermittency of chip formation, and the process damping effect in the ploughing-dominant and shearing-dominant regimes. Since the elasto-plastic deformation of micro end milling leads to large process damping which will affect the process stability, the process damping is also included in the cutting forces model. The micro end milling process is modeled as a two degrees of freedom system with the dynamic parameters of tool-machine system obtained by the receptance coupling method. According to the calculated cutting forces, the time-domain simulation method is extended to predict the chatter stability lobes diagrams. Finally, the micro end milling experiments of cutting forces and machined surface quality have been investigated to validate the accuracy of the proposed model.  相似文献   

12.
超精密车削中的各种物理现象,如切削力、刀具磨损以及加工表面质量等问题,都是以切屑形成为基础的。而生产实践中出现的许多问题,如振动、卷屑和断屑等,又都与超精密切削过程密切相关。选用的材料种类和切削条件不同,可生成不同形态的切屑。文章提出了一种研究切屑形成过程新的试验方法,利用该方法能够得到金刚石车削时高清晰的金属材料塑性流动图像。  相似文献   

13.
Ultrasonic-assisted machining is a machining operation based on the intermittent cutting of material which is obtained through vibrations generated by an ultrasonic system. This method utilizes low-amplitude vibrations with high frequency to prevent continuous contact between a cutting tool and a workpiece. Hot machining is another method for machining materials which are difficult to cut. The basic principle of this method is that the surface of the workpiece is heated to a specific temperature below the recrystallization temperature of the material. This heating operation can be applied before or during the machining process. Both of these operations improve machining operations in terms of workpiece-cutting tool characteristics. In this study, a novel hybrid machining method called hot ultrasonic-assisted turning (HUAT) is proposed for the machinability of Hastelloy-X material. This new technique combines ultrasonic-assisted turning (UAT) and hot turning methods to take advantage of both machining methods in terms of machining characteristics, such as surface roughness, stable cutting depths, and cutting tool temperature. In order to observe the effect of the HUAT method, Hastelloy-X alloy was selected as the workpiece. Experiments on conventional turning (CT), UAT, and HUAT operations were carried out for Hastelloy-X alloy, changing the cutting speed and cutting tool overhang lengths. Chip morphology was also observed. In addition, modal and sound tests were performed to investigate the modal and stability characteristics of the machining. The analysis of variance (ANOVA) method was performed to find the effect of the cutting speed, tool overhang length, and machining techniques (CT, UAT, HUAT) on surface roughness, stable cutting depths, and cutting tool temperature. The results show both ultrasonic vibration and heat improve the machining of Hastelloy-X. A decrease in surface roughness and an increase in stable cutting depths were observed, and higher cutting tool temperatures were obtained in UAT and HUAT compared to CT. According to the ANOVA results, tool overhang length, cutting speed, and machining techniques were effective parameters for surface roughness and stable cutting depths at a 1% significance level (p ≤ 0.01). In addition, cutting speed and machining techniques have an influence on cutting tool temperature at a 1% significance level (p ≤ 0.01). During chip analysis, serrated chips were observed in UAT and HUAT.  相似文献   

14.
A method is proposed to suppress regenerative chatter in turning operation, in which the ultrasonic elliptical vibration is added on the cutting tool. It results in the fact that the cutting tool is separated periodically from the chip and the workpiece, and the direction of the frictional force between the rake face of the cutting tool and the chip is reversed in each cycle of the ultrasonic elliptical vibration. The experimental investigations show that the regenerative chatter occurring in ordinary turning operation can be suppressed effectively by applying the ultrasonic elliptical vibration on the cutting tool. In order to clearify the reason of the regenerative chatter suppression, theoretical analysis and computer simulation are performed on turning with ultrasonic vibration. There is a good agreement among the experimental investigations, theoretical analysis and the computer simulation.  相似文献   

15.
Turning is one of the most commonly used cutting processes for manufacturing components in production engineering. The turning process, in some cases, is accompanied by intense relative movements between tool and workpiece, which is called chatter vibrations. Chatter has been identified as a detrimental problem that adversely impacts surface finish, tool life, process productivity, and dimensional accuracy of the machined part. Cooling/Lubrication in the turning process is normally done for some reasons, including friction and force reduction, temperature decrement, and surface finish improvement. Wet cooling is a traditional cooling/lubrication process that has been used in machining since the past. Besides, a variety of new cooling and lubricating approaches have been developed in recent years, such as the minimum quantity lubrication (MQL), cryogenic cooling, nanolubrication, etc., due to ecological issues. Despite the importance of cooling/lubrication in machining, there is a lack of research on chatter stability in the presence of cutting fluid in cutting processes. In this study, the chatter vibration in turning process for two cooling/lubrication conditions of conventional wet and MQL is investigated. An integrated theoretical model is used to predict both the metal cutting force and the chatter stability lobe diagram (SLD) in turning process. This model involves deriving a math equation for predicting metal cutting force for both wet and MQL conditions using experimental training force data and a Genetic Expression Programming (GEP)-based regression model. Also, the traditional single degree of freedom chatter model is used here for predicting the SLDs. The chatter model is discussed and verified with experimental tests. Then, the experimental results of the tool's acceleration signal, work surface texture, surface roughness, chip shape, and tool wear are presented and compared for wet and MQL conditions. The results of this study show that the cooling/lubrication systems such as wet or MQL have a considerable effect on the SLDs. Also, the predicted results of metal cutting force and SLD for both wet and MQL techniques are in good agreement with the experimental data. Therefore, it is recommended that for each lubrication condition including wet, or MQL, the SLD be determined to achieve higher machinability.  相似文献   

16.
金属切削加工的颤振及避振分析   总被引:1,自引:0,他引:1  
针对规避切削颤振问题,应用相对切削速度概念,提出了速度型动态切削力表达式以及车削或镗削的振动力学模型。通过对速度型动态切削力分析,解释了切削颤振产生的机理,给出了颤振发生的必要和充分条件。同时指出,在较大的切削速度范围内,存在一个或两个相对稳定的切削速度区域。如果公称切削速度处于该稳定区域,即使背吃刀量较大,系统也不易发生颤振。这种相对稳定的切削速度区域是可以预估的,文中给出了预估公式及预估方法,并由实验分析验证。依据能量原理提出的极限背吃刀量指标是预防颤振发生的有效预估指标,极限背吃刀量的表达式也解释了变速切削技术抑制颤振的原理。  相似文献   

17.
采用超声振动干式车削方法对钨基合金材料进行了车削加工实验,研究了切削参数、振动参数对零件加工尺寸精度的影响。结果表明,在切削深度一定的前提下,对于加工圆度影响的主次关系为:进给量>振动振幅>切削速度;而对锥度影响的主次关系为:振动振幅>切削速度>进给量。在低速低进给加工方式下,振动车削的抑振效果不明显,但随着切削速度、进给量的增大,振动切削抑振效果显著。本实验条件下,当振动振幅为3μm时,对工艺系统具有较佳的抑振效果。  相似文献   

18.
The tuned mass damper(TMD) has been successfully applied to the vibration control in machining,while the most widely adopted tuning is equal peaks,which splits the magnitude of the frequency response function(FRF) into equal peaks.However,chatter is a special self-excited problem and a chatter-free machining is determined by FRF at the cutting zone.A TMD tuning aiming at achieving the maximum chatter stability is studied,and it is formulated as an optimization problem of maximizing the minimum negative real part of FRF.By employing the steepest descend method,the optimum frequency and damping ratio of TMD are obtained,and they are compared against the equal peaks tuning.The advantage of the proposed tuning is demonstrated numerically by comparing the minimum point of the negative real part,and is further verified by damping a flexible mode from the fixture of a turning machine.A TMD is designed and placed on the fixture along the vibration of the target mode after performing modal analysis and mode shape visualization.Both of the above two tunings are applied to modify the tool point FRF by tuning TMD respectively.Chatter stability chart of the turning shows that the proposed tuning can increase the critical depth of cut 37% more than the equal peaks.Cutting tests with an increasing depth of cut are conducted on the turning machine in order to distinguish the stability limit.The tool vibrations during the machining are compared to validate the simulation results.The proposed damping design and optimization routine are able to further increase the chatter suppression effect.  相似文献   

19.
This paper investigates how changes in chatter amplitude and frequency depend on process damping effect in dynamic turning process. For this purpose, the two degrees of freedom (TDOF) cutting system was modeled, and for an orthogonal turning system, the process damping model with a new simple approach was developed. To further explore the nature of the TDOF cutting model, a numerical simulation of the process was developed by this model. This simulation was able to overcome some of the weaknesses of the analytical model. The equations of motion for this cutting system were written as linear and nonlinear in the τ-decomposition form. The variation in the process damping ratios for different work materials was simply obtained by solving the nonlinear differential equations. A series of orthogonal chatter stability tests were performed for the identification of dynamic cutting force coefficients, using AISI-1040, Al-7075, and Al-6061 work materials, at a constant spindle speed. Finally, the experimental results were analyzed and compared with the simulation model, and it was observed that the results obtained through the experiments comply with the simulation model results.  相似文献   

20.
This study establishes an analytical basis for the prediction of chatter stability in the turning process in the presence of wear flat on the tool flank. The components contributing to the forcing function in the machine vibration dynamics are analyzed in the context of cutting force, contact force and Coriolis force. In this way, the effects of the displaced workpiece volume at the wear flat as well as the workpiece rotation in conjunction with its radial compliance can be incorporated in describing the motion of the vibration system. Laplace domain analysis provides the analytical solution for the limits of stability in terms of the machine characteristics, structural stiffness, cutting stiffness, specific contact force, cutting conditions and cutter geometry. Stability plots are presented to relate stiffness ratio to cutting velocity in the determination of chatter stability. Machining experiments at various cutting conditions were conducted to identify the characteristic parameters involved in the vibration system and to verify the analytical stability limits. The extent of tool wear effect and Coriolis effect on the stability of machining is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号