首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
以具有核壳结构的聚丙烯酸酯颗粒增韧环氧树脂胶粘剂   总被引:8,自引:2,他引:8  
李已明  王晓敏 《粘接》1993,14(1):1-4
研制了PEA/PMMA~(…)核壳乳胶粒子,并用于改性环氧树脂。SEM照片指出PBA分散相的平均粒径尺寸。力学性能及Tg测试结果表明改性环氧树脂体系的力学性能大幅度提高,而Tg并未降低。PBA/PMMA核壳粒子为环氧树脂有效的增韧剂。  相似文献   

2.
采用预乳化-半连续种子乳液聚合法制备了聚丙烯酸丁酯(PBA)-聚(甲基丙烯酸甲酯-乙酸乙烯酯)[P(MMA-VAc)]核壳乳胶粒子,然后经醇解得到表层含羟基的PBA-聚(甲基丙烯酸甲酯-乙烯醇)[P(MMAVA)]核壳乳胶粒子。采用傅里叶变换红外光谱仪、差示扫描量热仪及透射电子显微镜等表征了核壳乳胶粒子的结构和形态。结果表明:PBA-P(MMA-VAc)为核壳结构,核壳乳胶粒子的平均粒径为340 nm,其中PBA核的平均粒径为270 nm;功能单体乙酸乙烯酯(VAc)参与了壳层共聚合,并且部分P(MMA-VAc)成功接枝到PBA核上;VAc用量增加导致壳层交联度提高、玻璃化转变温度上升,当VAc用量为壳层单体质量的20%时,壳层中以化学键连接在PBA核上的乙烯醇质量分数达5.44%。  相似文献   

3.
采用预乳化-半连续种子乳液聚合方法合成了聚丙烯酸丁酯(PBA)-聚(甲基丙烯酸甲酯-丙烯酰胺)核壳乳胶粒子,通过Hofmann降级反应成功地将其改性为表层含氨基的PBA-聚(甲基丙烯酸甲酯-乙烯胺)[P(MMA-VAm)]核壳乳胶粒子,并对其进行了测试与表征。结果表明:PBA-P(MMA-VAm)核壳乳胶粒子呈球形且分散均匀,平均粒径在340 nm左右,其中,PBA核乳胶粒子平均粒径在270 nm左右;随着丙烯酰胺(AM)用量增加,壳层共聚物P(MMA-VAm)的玻璃化转变温度逐渐降低,PBA-P(MMA-VAm)核壳乳胶粒子的热稳定性受到一定影响;随着AM用量增加,PBA-P(MMA-VAm)核壳乳胶粒子壳层氨基含量逐渐增大,当AM用量为MMA质量的20%时,氨基质量分数达到2%以上。  相似文献   

4.
采用预乳化-半连续种子乳液聚合方法合成了聚丙烯酸丁酯(PBA)-聚(甲基丙烯酸甲酯-丙烯酰胺)核壳乳胶粒子,通过Hofmann降级反应成功地将其改性为表层含氨基的PBA-聚(甲基丙烯酸甲酯-乙烯胺)[P(MMA-VAm)]核壳乳胶粒子,并对其进行了测试与表征。结果表明:PBA-P(MMA-VAm)核壳乳胶粒子呈球形且分散均匀,平均粒径在340 nm左右,其中,PBA核乳胶粒子平均粒径在270 nm左右;随着丙烯酰胺(AM)用量增加,壳层共聚物P(MMA-VAm)的玻璃化转变温度逐渐降低,PBA-P(MMA-VAm)核壳乳胶粒子的热稳定性受到一定影响;随着AM用量增加,PBA-P(MMA-VAm)核壳乳胶粒子壳层氨基含量逐渐增大,当AM用量为MMA质量的20%时,氨基质量分数达到2%以上。  相似文献   

5.
采用预乳化半连续种子乳液聚合方法制备了一种新型的表层含氨基的聚甲基丙烯酸丁酯(PBA)-聚(甲基丙烯酸甲酯-甲基丙烯酸二甲氨基乙酯)[P(MMA-DMA)]核壳乳胶粒子,并通过激光粒径分析仪、透射电子显微镜、X射线光电子能谱仪和元素分析仪等对其进行表征。结果表明:PBA-P(MMA-DMA)乳胶粒子为核壳结构,PBA核芯和PBA-P(MMA-DMA)核壳乳胶粒子的平均粒径分别为270,340 nm;PBA-P(MMA-DMA)核壳乳胶粒子的壳层确实含有甲基丙烯酸二甲氨基乙酯(DMA),当DMA用量为甲基丙烯酸甲酯质量的10.0%时,PBAP(MMA-DMA)核壳乳胶粒子氮元素质量分数达0.29%,折合壳层氨基质量分数达0.78%。  相似文献   

6.
采用种子乳液聚合方法合成了聚丙烯酸丁酯(PBA)/聚(甲基丙烯酸甲酯-衣康酸)[P(MMA-ITA)]核壳乳胶粒子,并用透射电子显微镜、傅里叶变换红外光谱仪、差示扫描量热仪及非水酸碱滴定等对其进行了表征.结果表明:核壳乳胶粒子平均粒径为330 nm,其中,PBA核平均粒径为290 nm;通过接枝共聚物P(MMA-ITA)实现了核壳间的化学键连接.  相似文献   

7.
利用AFM轻敲模式(tapping mode)下的相位成像技术,对PMMA/PBA核壳乳胶及具有相同聚合物组分的共混乳胶成膜后的涂膜形貌进行了比较研究,发现核壳乳胶成膜后,由PMMA组成的硬核呈岛状均匀分布于由PBA组成的软壳融合后形成的连续相中,而对于共混乳胶,由于乳胶粒子间容易发生聚结,其成膜后PMMA乳胶粒子未能均匀分散形成海岛结构.不同粒子形态的乳胶其涂膜的透光性、摆杆硬度等也存在着明显差别.  相似文献   

8.
PBA/PMMA核壳结构乳胶粒子粒径分析   总被引:2,自引:0,他引:2  
采用种子乳液聚合制备出了PBA/PMMA核壳结构乳胶粒子,研究并分析了MMA在3种不同投料方式(间歇法、半间歇法和平衡溶胀法)下粒子粒径变化情况。实验发现第二单体采用间歇法投料可获得较理想的核壳结构乳胶粒。  相似文献   

9.
丙烯酸酯类增韧剂对聚氯乙烯抗冲和加工塑化特性的影响   总被引:1,自引:0,他引:1  
以聚丙烯酸丁酯(PBA)为核,以聚甲基丙烯酸甲酯(PMMA)为壳,通过种子乳液聚合制备了具有不同核/壳比的丙烯酸酯类抗冲改性剂(AIM)。透射电镜观察发现,AIM乳胶粒子具有明显的核?壳结构。考察了不同核壳比AIM共混改性聚氯乙烯(PVC)的相态结构和抗冲性能,发现AIM核壳比为60/40~80/20时,增加核壳比对提高AIM对PVC的增韧效果有利。随着AIM加入量增大,PVC树脂加工塑化时间缩短。  相似文献   

10.
本工作研究了用种子乳液聚合法所得的聚乙酸乙烯-丙烯酸丁酯[P(VAc-BA)]胶乳粒子的形态。结果表明,P(VAc-BA)胶乳粒子具有两相核-壳结构,内核为PVAc,外壳为PBA,若改变加料顺序,即将PBA 胶乳作为种子胚乳,则可得到相反的核-壳结构。胶乳粒子形态的变化对胶乳成膜性能有明显的影响。  相似文献   

11.
Poly(butyl acrylate)/poly(methyl methacrylate) (PBA/PMMA) core–shell particles embedded with nanometer‐sized silica particles were prepared by emulsion polymerization of butyl acrylate (BA) in the presence of silica particles preabsorbed with 2,2′‐azobis(2‐amidinopropane)dihydrochloride (AIBA) initiator and subsequent MMA emulsion polymerization in the presence of PBA/silica composite particles. The morphologies of the resulting PBA/silica and PBA/silica/PMMA composite particles were characterized, which showed that AIBA could be absorbed effectively onto silica particles when the pH of the dispersion medium was greater than the isoelectric potential point of silica. The critical amount of AIBA added to have stable dispersion of silica particles increased as the pH of the dispersion medium increased. PBA/silica composite particles prepared by in situ emulsion polymerization using silica preabsorbed with AIBA showed higher silica absorption efficiency than did the PBA/silica composite particles prepared by direct mixing of PBA latex and silica dispersion or by emulsion polymerization in which AIBA was added after the mixing of BA and silica. The PBA/silica composite particles exhibited a raspberrylike morphology, with silica particles “adhered” to the surfaces of the PBA particles, whereas the PBA/silica/PMMA composite latex particles exhibited a sandwich morphology, with silica particles mainly at the interface between the PBA core and the PMMA shell. Subsequently, the PBA/silica/PMMA composite latex obtained had a narrow particle size distribution and good dispersion stability. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3425–3432, 2006  相似文献   

12.
In this article, PBA/P(MMA–crosslinking agent)-composite particle latexes were prepared by semicontinuous seeded emulsion polymerization. To determine the seed emulsion's saturating capacity of an emulsifier, a mathematical model was built to simulate the changes of the seed PBA emulsion's surface tension with the amount of emulsifier added dropwise. The effects of the emulsifier amount added in the second stage and the addition method on the morphology of the composite particles were studied. The results were shown as follows: If the amount of emulsifier added in one batch to the seed emulsion in the second stage was less than or equal to the saturating capacity of emulsifier of the seed emulsion (Cs), the morphology of the particles was “core–shell”; otherwise, a few particles were of a core–shell structure. However, if shell materials were preemulsified and added dropwise at an appropriate rate, the latex particles were still of a core–shell structure, even when the amount of emulsifier added to the seed emulsion was greater than the Cs. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 969–975, 1998  相似文献   

13.
张奎  屈龙  张红  朱勇  王平华 《粘接》2009,30(11):51-54
以醋酸乙烯酯(VAc)为核单体,丙烯酸丁酯(BA)为壳单体,二甲基丙烯酸乙二醇酯(EGDMA)为交联剂,采用分阶段饥饿态加料方式和半连续乳液聚合方法合成了具有硬核软壳结构的聚(醋酸乙烯酯/丙烯酸丁酯)。采用OP-10和十二烷基硫酸钠(SDS)质量比为2:1的复合乳化剂,用量为4%左右时乳液稳定;壳单体的滴加速度在5~6g/h时,聚合体系稳定,且转化率高。用FT—IR分析了聚合物的结构;并用透射电镜表征了乳胶粒结构。  相似文献   

14.
PBA/MMA-MAA核-壳型乳液聚合研究   总被引:2,自引:0,他引:2  
本文以种子乳液聚合法制备了PBA/MMA-MAA核-壳型复合取合物乳液。讨论了复合聚合物时引发剂用量和补加乳化剂用量对聚合反应及乳胶粒及其分布的影响。结果表明,引发剂用量控制在0.2%(wt),乳化剂用量在0.75%(wt),可制得粒径分布较窄且性能良好的核-壳型聚合物乳液用于毛面剂中。  相似文献   

15.
Conductive polymer particles, polyaniline (PANI)‐coated poly(methyl methacrylate–butyl acrylate–acrylic acid) [P(MMA–BA–AA)] nanoparticles, were prepared. The P(MMA–BA–AA)/PANI core–shell complex particles were synthesized with a two‐step miniemulsion polymerization method with P(MMA–BA–AA) as the core and PANI as the shell. The first step was to prepare the P(MMA–BA–AA) latex particles as the core via miniemulsion polymerization and then to prepare the P(MMA–BA–AA)/PANI core–shell particles. The aniline monomer was added to the mixture of water and core nanoparticles. The aniline monomer could be attracted near the outer surface of the core particles. The polymerization of aniline was started under the action of ammonium persulfate (APS). The final product was the desired core–shell nanoparticles. The morphology of the P(MMA–BA–AA) and P(MMA–BA–AA)/PANI particles was characterized with transmission electron microscopy. The core–shell structure of the P(MMA–BA–AA)/PANI composites was further determined by Fourier transform spectroscopy and ultraviolet–visible measurements. The conductive flakes made from the core–shell latexes were prepared, and the electrical conductivities of the flakes were studied. The highest conductivity of the P(MMA–BA–AA)/PANI pellets was 2.05 S/cm. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

16.
Poly(butyl acrylate–methyl methacrylate) [P(BA–MMA]/polyaniline (PANI) core–shell complex particles were synthesized with a two‐step emulsion polymerization method with P(BA–MMA) as the core and PANI as the shell. The first step was to prepare P(BA–MMA) latex particles as the core via soapless emulsion polymerization. The second step was to prepare P(BA–MMA)/PANI core–shell particles. Sodium dodecyl sulfate was fed into the P(BA–MMA) emulsion as a surfactant, and this was followed by the addition of the aniline monomer. A bilayer structure of the surfactant over the surfaces of the core particles was desired so that the aniline monomer could be attracted near the outer surface of the core particles. In some cases, dodecyl benzene sulfonic acid was added after 2 h when the polymerization of aniline was started. The final product was the desired core–shell particles. The morphology of P(BA–MMA) and P(BA–MMA)/PANI particles was observed with transmission electron microscopy. The thermal properties were studied with thermogravimetric analysis and differential scanning calorimetry. Furthermore, conductive films made from the core–shell latexes were prepared, and the electrical conductivities of the films were studied. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 823–830, 2007  相似文献   

17.
Graft copolymers with poly(n-butyl acrylate) (PBA) backbones and poly(methyl methacrylate) (PMMA) macromonomer side chains are used as compatibilizing agents for PBA/PMMA composite latexes. The composite latexes are prepared by seeded emulsion polymerization of methyl methacrylate (MMA) in the presence of PBA particles. Graft copolymers were already incorporated into the PBA particles prior to using these particles as seed via miniemulsion (co)polymerization of n-butyl acrylate (BA) in the presence of the macromonomers. Comparison between size averages of composite and seed particles indicates no secondary nucleation of MMA during seeded emulsion polymerization. Transmission electron microscopy (TEM) observations of composite particles show the dependence of particle morphologies with the amount of macromonomer (i.e., mole ratio of macromonomer to BA and molecular weight of macromonomer) in seed latex. The more uniform coverage with the higher amount of macromonomer suggests that graft copolymers decrease the interfacial tension between core and shell layers in the composite particles. Dynamic mechanical analysis of composite latex films indicates the existence of an interphase region between PBA and PMMA. The dynamic mechanical properties of these films are related to the morphology of the composite particles, the arrangement of phases in the films, and the volume of the interphase polymer. © 1997 John Wiley & Sons, Inc.  相似文献   

18.
采用种子乳液聚合法制备了丙烯酸(AA)/丙烯酰胺(AM)交联的、具有核壳结构的甲基丙烯酸甲酯(MMA)/丙烯酸丁酯(BA)/丙烯腈(AN)复合乳液,研究了壳层软硬单体比、复合交联剂AA/AM及壳层交联单体AN用量对乳液胶膜拉伸强度和断裂伸长率的影响。结果表明:当核层和壳层之间的玻璃化转变温度Tg相近时,核壳乳液核、壳两部分分子链的协调运动能力较强,其乳液胶膜拉伸强度和断裂伸长率都较大;当AA/AM用量不超过4%时,乳液胶膜强度和断裂伸长率随着AA/AM用量增大而增大;随着AN用量的增加,乳液胶膜拉伸强度逐渐增大。  相似文献   

19.
The radical-induced grafting of n-butyl acrylate (BA) onto poly(butadiene-co-styrene) [(P(Bd-S)] latexes during seeded emulsion polymerization was studied. This P(Bd-S)/PBA rubber/rubber core/shell latex system exhibited unique grafting behavior as compared to other extensively studied rubber/glass core/shell latex systems, such as poly(butadiene-co-styrene)/poly(methyl methacrylate) [P(Bd-S)/PMMA], poly(butadiene-co-styrene)/polystyrene [P(Bd-S)/PS] and poly(butadiene-co-styrene)/poly(acrylonitrile)[P(Bd-S)/PAN]. These composite latexes were characterized by the formation of a highly grafted/crosslinked P(Bd-S)/PBA interphase zone generated during the seeded emulsion polymerization process. Although both of the individual core and shell polymers studied were “soft” themselves, the resulting P(Bd-S)/PBA composite latex particles were found to be rather “hard.” The formation of the interphase zone was studied by using techniques such as solvent extraction, differential scanning calorimetry (DSC), and transmission electron microscopy (TEM). © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65:511–523, 1997  相似文献   

20.
In this study, the hollow latex particle was synthesized by three processes. The first process was to synthesize the poly(methyl methacrylate-co-methacrylic acid) (poly(MMA-MAA)) copolymer latex particles by the method of soapless emulsion polymerization. Following the first process, the second process was to polymerize MMA, MAA, 3,3-(trimethoxysilyl) propyl methacrylate (MPS), and ethylene glycol dimethacrylate in the presence of poly(MMA-MAA) latex particles to form the linear poly(MMA-MAA)/crosslinking poly(MMA-MAA-MPS) core–shell latex particles. In the third process, the core–shell latex particles were heated in the presence of ammonia to form the poly(MMA-MAA-MPS) hollow latex particles. A sufficient heating time and high-heating temperature were necessary for the ammonia to dissolve the linear poly(MMA-MAA) core to form a perfect hollow structure. The crosslinking poly(MMA-MAA-MPS) shell was a barrier for the ammonia to diffuse into the latex particles so that the latex particle with the high-crosslinking shell showed an imperfect hollow structure. Besides, the hollow poly(MMA-MAA-MPS) latex particles reacted with ZnO nanoparticles, which were synthesized by a traditional sol-gel method, to form the polymer/inorganic poly(MMA-MAA-MPS)/ZnO composite hollow latex particles. With the increase of crosslinking degree would increase the amount of ZnO bonding. Moreover, the poly(MMA-MAA-MPS) hollow latex particles were used as carriers to load with the model drug, caffeine. The release of caffeine from poly(MMA-MAA-MPS) hollow latex particles was investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号