首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
陈鑫  邓育新  胡利明  唐婕  邵荣  王重庆 《硅酸盐通报》2016,35(11):3569-3574
V系催化剂具有良好的抗中毒能力,广泛应用于燃煤电厂、工业锅炉烟气(固定源)和车辆尾气(移动源)脱硝领域.本文采用水热法制备了V2O5-MoO3/TiO2催化剂,并通过挤出成型得到蜂窝式V2O5-MoO3/TiO2催化剂,通过与共混法相比,发现采用水热法表现出来的较高的低温SCR活性,并研究了MgO的掺杂对V2O5-MoO3/TiO2催化剂性能的影响,发现MgO的掺杂能够降低SO2的转化率.并通过表征发现采用水热反应法得到的V2O5-MoO3/TiO2催化剂能使活性组分高度分散于TiO2载体表面上,具有较高的比表面积,从而使催化剂表现出最佳的低温活性,同时MgO修饰的V2O5-MoO3/TiO2催化剂的抗硫抗水性以及抗碱金属中毒性也做出了研究.  相似文献   

2.
李凝 《精细化工》2011,28(4):355-358,369
用浸渍法制备了负载型MxOy-V2O5/Al2O3催化剂,同时考察了不同的制备方法对MoO3-V2O5/Al2O3催化剂的性能影响。用BET、H2-TPR、TPD平衡法等考察了催化剂的比表面积、氧化还原性能、表面氧脱附性能,结果表明,添加变价助剂Mo、Fe和Cr氧化物会增加供氧数目,提高α-蒎烯转化率。MoO3-V2O5/Al2O3催化剂表面O 2-和O-物种较多,活性也较好,桃金娘烯醛收率较高。MoO3-V2O5/Al2O3催化剂的制备方法影响其催化性能,表面化学改性法制备的催化剂表面具有较多O2-和O-物种,有利于催化剂的活性提高,α-蒎烯的转化率达88.9%,桃金娘烯醛的收率为79.1%。  相似文献   

3.
杨春雁  杨卫亚  凌凤香  范峰 《当代化工》2010,39(2):120-122,125
在全自动化学吸附仪上,用程序升温硫化(TPS)技术对一种体相加氢脱硫催化剂进行表征,考察了金属与载体的相互作用、金属间的相互作用以及焙烧温度对这种催化剂硫化性能的影响。结果表明,MoO3负载于Al2O3载体后,硫化峰温大幅降低,并在TPS谱图中体现出分步硫化的过程,证明MoO3与载体间存在相互作用,形成了易于硫化还原的活性中心。当Mo和Ni共同作用于载体时,形成了更易于硫化的Mo-Ni-O复合相。Co的加入加强了Mo与Ni间的协同作用,Co、Mo、Ni与Al形成了更易硫化的活性中心。W的加入反而改变了硫化中心的性质,使硫化温度提高。对(Mo+Ni)/Al2O3和(Co+Mo+Ni)/Al2O3催化剂,于500℃焙烧时,催化剂硫化性能最好。最后得出结论:当Co、Mo、Ni 3种金属共同作用于载体,并于500℃焙烧时,其硫化中心活性最高。  相似文献   

4.
采用共同浸渍法制备了K2MoO4-NiO/SiO2催化剂,考察了NiO添加量对高硫合成气制甲硫醇K2MoO4/SiO2催化剂性能的影响.活性评价结果表明,添加了NiO的催化剂活性有很大的提高,当Ni/Mo物质的量比为2/9时,CO转化率为72.6%,较未添加NiO的催化剂提高了一倍多.程序升温还原(TPR)表征显示,添加的NiO与Mo有强相互作用,促进了Mo物种的还原.电子自旋共振(ESR)表征显示,反应后的催化剂中可检测到"oxo-Mo(V)"物种和"thio-Mo(V)"物种,K2MoO4-NiO/SiO2催化剂表面主要为"thio-Mo(V)"物种,而K2MoO4/SiO2催化剂表面主要为"oxo-Mo(V)"物种,NiO的添加促进了Mo物种的还原、硫化,可能是造成催化剂活性极大提高的原因.  相似文献   

5.
TiO_2用于Mo系加氢脱硫催化剂的研究进展   总被引:7,自引:0,他引:7  
叙述了TiO2 及TiO2 /γ -Al2 O3 载体和该型Mo系催化剂的制备技术 ,分析了MoO3 在载体上的分散状态。并对TiO2 自身的一些特性及以此作载体的Mo系加氢脱硫催化剂的性能作了介绍。研究表明 ,用TiO2 调变γ -Al2 O3,能减弱MoO3 和γ -Al2 O3 之间的相互作用 ,改善MoO3 在载体表面的分散 ,促进MoO3 的还原 ,有利于催化剂的预硫化 ,提高催化剂的HDS活性  相似文献   

6.
程金民  黄伟 《工业催化》2010,18(1):50-53
于不同温度(350℃、450℃、550℃和650℃)焙烧(NH4)6Mo7O24.4H2O,制得不同晶型的MoO3,以其为前驱体程序升温碳化制备了一系列的Mo2C催化剂,用于催化甲烷二氧化碳重整制合成气的反应进行活性评价。并通过热重分析、X射线衍射分析和程序升温还原等表征,讨论了MoO3的晶型与所制备的Mo2C的体相和催化剂性能的关系。结果表明,350℃和450℃焙烧(NH4)6Mo7O24.4H2O可制得较为单一的正斜方晶结构的α-MoO3,α-MoO3通过范德华力连接的层状结构有利于在程序升温碳化过程中由CH4/H2分解产生的活泼氢和活泼碳插入层间,促进了Mo2C的生成,进而催化性能较佳。  相似文献   

7.
以浸渍法制备VMo/γ-Al_2O_3和VMo Mg/γ-Al_2O_3催化剂,考察其催化丙烷氧化脱氢制丙烯的反应活性,采用XRD、UV-Vis DRS和In suit IR对催化剂进行表征。结果表明,V负载质量分数为3%、Mo负载质量分数为7%时的3V7Mo/γ-Al_2O_3催化剂表现出较好的催化性能;添加Mg后催化剂的催化性能有所改善,反应温度500℃时,丙烷转化率为18.19%,丙烯选择性74.76%。丙烷和丙烯在3V7Mo/γ-Al_2O_3和3V7Mo4Mg/γ-Al_2O_3催化剂上吸附后,C—H键的H与催化剂活性中心的晶格氧发生作用形成H—O键,且3V7Mo4Mg/γ-Al_2O_3催化剂上出现C—O键的温度比3V7Mo/γ-Al_2O_3催化剂高,表明加入Mg有利于提高丙烯选择性。  相似文献   

8.
以Al2O3为载体,采用等体积浸渍法制备了P2O5-MoO3/Al2O3催化剂。在排除内外扩散影响的条件下,研究了1-丁烯与H2S在P2O5-MoO3/Al2O3催化剂上反应生成仲丁硫醇反应的本征动力学。在反应温度120~180℃、压力0.2 MPa的条件下,考察了反应温度、1-丁烯分压和硫化氢分压对反应速率的影响。对1-丁烯在P2O5-MoO3/Al2O3催化剂上的催化硫化机理进行了探讨。实验结果表明,1-丁烯与H2S在P2O5-MoO3/Al2O3催化剂上的反应机制是1-丁烯与H2S发生共吸附后由表面反应控制的二级催化反应,根据该机理得到反应动力学方程为A B2A A B B A(1)kp p r K p K p根据实验数据得到其指前因子k0=3.3×109,活化能Ea=60.78 kJ/mol。  相似文献   

9.
使用浸渍法制备了不同负载量的MoO3γ-Al2O3催化剂,考察了它们在550℃反应温度下正丁烷催化脱氢性能.用XRD,FT—IR和Raman光谱对催化剂的表面结构进行了研究,并分析了催化剂的表面结构与其催化性能的关系。结果表明,γ-Al2O3载体表面钼氧物种随负载量的增加变化情况为:孤立MoO3四面体-二维多聚MoO3八面体-MoO3晶体和Al3(MoO3)3晶体,MoO3在载体表面的最大单层覆盖的质量分数约为20%;孤立分散MoO3物种对正丁烯的选择性比二维多聚MoO3物种及三维的MoO3要高,负载的质量分数5%催化剂取得最高的正丁烯选择性为62.54%;15%~35%催化剂取得较好的正丁烯收率,在11.0%~11.7%,差距不大;MoO3多层聚集态(负载的质量分数为35%)的催化剂相比单层覆盖态(20%),催化活性没有因为钼氧物种的聚集而有大的降低,正丁烯收率仅少0.08%。  相似文献   

10.
TiO2复合氧化物的制备及其加氢脱硫应用进展   总被引:1,自引:0,他引:1  
对TiO2及TiO2-Al2O3、TiO2-SiO2和TiO2-ZrO2载体的制备技术及其在加氢脱硫中的应用做了综述。众多研究者的研究表明,以TiO2调变的Al2O3、SiO2、ZrO2载体能影响MoO3与Al2O3、MoO3与SiO2及MoO3与ZrO2之间的相互作用,改善MoO3,在载体表面的分散,促进其还原,有利于提高催化剂表面活性组分的数量,提高催化剂的HDS活性。  相似文献   

11.
V2O5-MoO3/TiO2 催化剂的NOx选择性催化还原及SO2氧化活性   总被引:2,自引:0,他引:2  
采用浸渍法以TiO2为载体制备V2O5-MoO3/TiO2 选择性催化还原催化剂,研究V2O5和MoO3负载量对于催化剂选择性催化还原反应及SO2氧化活性的影响,并考察氧含量、氨氮物质的量比和反应空速对3%V2O5-6%MoO3/TiO2催化剂选择性催化还原脱硝活性的影响。结果表明,随着催化剂中V2O5负载质量分数增加,V2O5-MoO3/TiO2 催化剂的选择性催化还原活性和SO2氧化活性均呈上升趋势。MoO3的负载对催化剂的SO2氧化活性有明显抑制作用。MoO3负载质量分数超过9%,制备的催化剂既保持较高的低温选择性催化还原活性,又使选择性催化还原反应中的SO2转化率小于1%。  相似文献   

12.
氨法选择性催化还原脱硝催化剂的研究   总被引:1,自引:1,他引:0  
翟赟  邱文革  何洪 《工业催化》2009,17(2):60-64
采用浸渍法,以TiO2为载体,负载P2 O5、V2O5和MoO3或WO3制备选择性催化还原(SCR)催化剂,研究了不同磷含量以及水蒸汽对催化剂性能的影响。结果表明,随着催化剂中磷含量增加,P2O5-V2O5-MoO3/TiO2催化剂的SCR活性呈先上升后下降的趋势,其中,含质量分数0.5%P2 O5催化剂的活性较好。反应体系中水蒸汽的存在对催化剂的低温活性有明显的抑制作用。  相似文献   

13.
以镍铝摩尔比为3∶1,尿素作为沉淀剂,采用均匀沉淀法制备了Ni2+-Al3+-CO2-3-LDHs层状材料。以Ni2+-Al3+-CO2-3-LDHs作为前驱体,分别与NaCl、钼酸钠( Na2 MoO4·2H2 O)进行离子交换反应,成功构建了Ni2+-Al3+-MoO2-4-LDHs防腐缓蚀剂。通过XRD、SEM、FT-IR、TG-DTG、ICP对样品进行了分析表征,研究结果表明MoO2-4插入LDHs层间,其层间距由0.769 nm增加到0.982 nm,样品晶相完整,并保持了良好的层状结构。  相似文献   

14.
研究了四氢糠醇(THFA)与氨气在固定床反应器中合成吡啶的工艺路线,对催化剂进行了考察。以Al2O3为基底,分别制备负载Co3O4、Cr2O3、MoO3的单一组分催化剂,筛选出催化性能最好的催化剂MoO3作为主催化剂,混合不同量的Co3O4、Cr2O3,制备成各种复合催化剂。确定催化剂Cr2O3-MoO3/Al2O3催化效果最佳,对其结构进行了表征,并在固定床反应器上对该催化剂催化四氢糠醇合成吡啶的工艺及稳定性进行了研究。最适宜反应条件下,即500 ℃,氨气流量700 mL/min,四氢糠醇进液量0.15 mL/min及常压条件进行时,四氢糠醇转化率达100%,吡啶收率达85.30%。  相似文献   

15.
The interactions between Mo and V on alumina are studied for the oxidative dehydrogenation (ODH) of propane. Dispersed surface molybdena and vanadia species share alumina support but show no interaction below Mo + V monolayer coverage. Vanadia and molybdena species react on alumina into mixed Mo–V–(Al)–O above Mo + V monolayer coverage, which nature depends on environmental conditions. Molybdena sites may form Al2(MoO4)3 or Mo–V–O phases depending on loading and temperature. The Mo–V–O phases spread on the support as separate surface oxides at lower coverage, such trend appears promoted by ODH reaction conditions.  相似文献   

16.
利用浸渍法制备负载型V2O5-MoO3-P2O5 /γ-Al2O3催化剂。采用ICP、N2吸附-脱附等温线及XRD表征催化剂的物化性质、结构特征,通过TPR考察催化剂晶格氧的供氧能力。在固定床连续微反应装置上,以来源于可再生生物资源的糠醛为原料,进行催化剂的性能评价。实验结果表明:当催化剂中MoO3和V2O5质量比为0.4、反应混合气体(糠醛体积分数2%的空气混合气体)空速为3000 h-1、反应温度为305 ℃的工艺条件下,测得糠醛转化率为82%,顺酐的收率为50%,说明适当地引入MoO3能够调节催化剂活性中心与载体间的强相互作用,达到促进催化剂晶格氧快速交换的目的,从而进一步提高催化剂的活性和选择性。  相似文献   

17.
以介孔氧化钛晶须成型材料为载体,通过浸渍法制备不同MoO3负载量的MoO3/TiO2加氢脱硫催化剂. XRD分析表明,介孔氧化钛晶须成型载体为纯锐钛矿相,MoO3负载量为7.2%(w)的催化剂未出现MoO3的衍射峰;BET分析显示,负载7.2%(w) MoO3后,氧化钛晶须成型载体的比表面积和孔容能保持原来的80%以上. 活性评价结果表明,未经预硫化的MoO3/TiO2催化剂直接应用于二苯并噻吩(DBT)加氢脱硫反应时,在温度280~300℃、氢分压2.0 MPa、体积空速4 h-1、H2/油体积比600的条件下,DBT转化率达100%. 将模型溶液中硫含量由400′10-6 g/g降至10′10-6 g/g以下,催化剂表现出较高的活性,且在一定条件下运行1000 h未出现失活迹象.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号