首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Frame-theoretic analysis of oversampled filter banks   总被引:1,自引:0,他引:1  
We provide a frame-theoretic analysis of oversampled finite impulse response (FIR) and infinite impulse response (FIR) uniform filter banks (FBs). Our analysis is based on a new relationship between the FBs polyphase matrices and the frame operator corresponding to an FB. For a given oversampled analysis FB, we present a parameterization of all synthesis FBs providing perfect reconstruction. We find necessary and sufficient conditions for an oversampled FB to provide a frame expansion. A new frame-theoretic procedure for the design of paraunitary FBs from given nonparaunitary FBs is formulated. We show that the frame bounds of an FB can be obtained by an eigen-analysis of the polyphase matrices. The relevance of the frame bounds as a characterization of important numerical properties of an FB is assessed by means of a stochastic sensitivity analysis. We consider special cases in which the calculation of the frame bounds and synthesis filters is simplified. Finally, simulation results are presented  相似文献   

2.
A Direct Design of Oversampled Perfect Reconstruction FIR Filter Banks   总被引:2,自引:0,他引:2  
We address a problem to find optimal synthesis filters of oversampled uniform finite-impulse-response (FIR) filter banks (FBs) yielding perfect reconstruction (PR), when we are given an analysis FB, in the case where all the filters have the same length that is twice a factor of downsampling. We show that in this class of FBs, a synthesis FB that achieves PR can be found in closed form with elementary matrix operations, unlike conventional design methods with numerical optimization. This framework allows filter coefficients to be complex as well as real. Due to the extra degrees of freedom in a synthesis FB provided by oversampling, we can determine optimal coefficients of synthesis filters that meet certain criteria. We introduce in this paper two criteria: variance of additive noise and stopband attenuation. We show theoretical results of optimal synthesis filters that minimize these criteria and design examples of oversampled linear-phase FIR FBs and DFT-modulated FBs. Moreover, we discuss applications to signal reconstruction from incomplete channel data in transmission and inverse transform of windowed discrete Fourier transform with 50% overlapping.  相似文献   

3.
This paper investigates and solves the problem of frame bound ratio minimization for oversampled perfect reconstruction (PR) filter banks (FBs). For a given analysis PRFB, a finite dimensional convex optimization algorithm is derived to redesign the subband gain of each channel. The redesign minimizes the frame bound ratio of the FB while maintaining its original properties and performance. The obtained solution is precise without involving frequency domain approximation and can be applied to many practical problems in signal processing. The optimal solution is applied to subband noise suppression and tree structured FB gain optimization, resulting in deeper insights and novel solutions to these two general classes of problems and considerable performance improvement. Effectiveness of the optimal solution is demonstrated by extensive numerical examples.  相似文献   

4.
Methods widely used to design filters for uniformly sampled filter banks (FBs) are not applicable for FBs with rational sampling factors and oversampled discrete Fourier transform (DFT)-modulated FBs. In this paper, we show that the filter design problem (with regularity factors/vanishing moments) for these two types of FBs is the same. Following this, we propose two finite-impulse-response (FIR) filter design methods for these FBs. The first method describes a parameterization of FBs with a single regularity factor/vanishing moment. The second method, which can be used to design FBs with an arbitrary number of regularity factors/vanishing moments, uses results from frame theory. We also describe how to modify this method so as to obtain linear phase filters. Finally, we discuss and provide a motivation for iterated DFT-modulated FBs.  相似文献   

5.
This paper presents conditions under which the sampling lattice for a filter bank can be replaced without loss of perfect reconstruction. This is the generalization of common knowledge that removing up/downsampling will not lose perfect reconstruction. The results provide a simple way of building oversampled filter banks. If the original filter banks are orthogonal, these oversampled banks construct tight frames of l2 (Z(n)) when iterated. As an example, a quincunx lattice is used to replace the rectangular one of the standard wavelet transform. This replacement leads to a tight frame that has a higher sampling in both time and frequency. The frame transform is nearly shift invariant and has intermediate scales. An application of the transform to image fusion is also presented.  相似文献   

6.
Framing pyramids   总被引:12,自引:0,他引:12  
Burt and Adelson (1983) introduced the Laplacian pyramid (LP) as a multiresolution representation for images. We study the LP using the frame theory, and this reveals that the usual reconstruction is suboptimal. We show that the LP with orthogonal filters is a tight frame, and thus, the optimal linear reconstruction using the dual frame operator has a simple structure that is symmetric with the forward transform. In more general cases, we propose an efficient filterbank (FB) for the reconstruction of the LP using projection that leads to a proved improvement over the usual method in the presence of noise. Setting up the LP as an oversampled FB, we offer a complete parameterization of all synthesis FBs that provide perfect reconstruction for the LP. Finally, we consider the situation where the LP scheme is iterated and derive the continuous-domain frames associated with the LP.  相似文献   

7.
Klouche-Djedid  A. 《Electronics letters》1998,34(17):1650-1651
A simple design procedure for stable, causal and perfect reconstruction infinite impulse response parallel uniform discrete Fourier transform filter banks (DFT FBs) based on a new polyphase decomposition, the `polyphase-oversampled' FB, is presented. The proposed design results in causal and stable analysis and synthesis filters that are all derived from a single prototype filter, resulting in efficient realisations. A discussion of the FB numerical properties and some design examples are provided  相似文献   

8.
Oversampled filter banks offer more design freedom, better numerical stability, and less sensitivity to quantization noise as compared to critically sampled filter banks. These advantages come at the cost of increased computational complexity. Therefore, oversampled modulated filter banks allowing a particularly efficient implementation are of practical interest. Furthermore, in certain applications (such as image coding) it is important to have linear phase filters in all channels of the filter bank. In this paper we discuss oversampled filter banks with emphasis on cosine-modulated filter banks and linear phase filters. We establish a relation of oversampled filter banks with redundant signal expansions. We also perform an analysis of the numerical sensitivity of oversampled filter banks. The increased design freedom in oversampled filter banks is demonstrated both theoretically and by means of simulation examples. Finally, we present a unified theory of cosine-modulated filter banks.  相似文献   

9.
Time/space varying filter banks (FBs) are useful for non-stationary images. Lifting factorization of FBs results in structural perfect reconstruction even during the transition from one FB to other. This allows spatial switching between arbitrary FBs, avoiding the need to design border FBs. However, we show that lifting based switching between arbitrarily designed FBs induces spurious transients in the subbands during the transition. In this paper, we study the transients in lifting based switching of two-channel FBs. We propose two solutions to overcome the transients. One solution consists of a boundary handling mechanism to switch between any arbitrarily designed FBs, while the other solution proposes to design the FBs with a set of conditions applied on lifting steps. Both solutions maintain good frequency response during the transition and eliminate the transients. Using the proposed methods, we develop a spatial adaptive transform by switching between the long length FBs (either the JPEG2000 9/7 FB or the newly designed 13/11 FB) and the short length FBs (JPEG2000 5/3 FB) for lossy image compression. This adaptive transform shows PSNR improvement for images over JPEG2000 9/7 FB in low bit rate region (up to 0.2 bpp) and subjective improvements with reduced ringing up to medium bit rates (up to 0.6 bpp).  相似文献   

10.
We investigate a lattice structure for a special class of N-channel oversampled linear-phase perfect reconstruction filterbanks with a decimation factor M smaller than N. We deal with systems in which all analysis and synthesis filters have the same finite impulse response (FIR) length and share the same center of symmetry. We provide the minimal lattice factorization of a polyphase matrix of a particular class of these oversampled filterbanks (FBs). All filter coefficients are parameterized by rotation angles and positive values. The resulting lattice structure is able to provide fast implementation and allows us to determine the filter coefficients by solving an unconstrained optimization problem. We consider next the case where we are given the generalized lapped pseudo-biorthogonal transform (GLPBT) lattice structure with specific parameters, and we a priori know the correlation matrix of noise that is added in the transform domain. In this case, we provide an alternative lattice structure that suppress the noise. We show that the proposed systems with the lattice structure cover a wide range of linear-phase perfect reconstruction FBs. We also introduce a new cost function for oversampled FB design that can be obtained by generalizing the conventional coding gain. Finally, we exhibit several design examples and their properties.  相似文献   

11.
This paper introduces two classes of cosine-modulated causal and stable filter banks (FBs) with near perfect reconstruction (NPR) and low implementation complexity. Both classes have the same infinite-length impulse response (IIR) analysis FB but different synthesis FBs utilizing IIR and finite-length impulse response (FIR) filters, respectively. The two classes are preferable for different types of specifications. The IIR/FIR FBs are preferred if small phase errors relative to the magnitude error are desired, and vice versa. The paper provides systematic design procedures so that PR can be approximated as closely as desired. It is demonstrated through several examples that the proposed FB classes, depending on the specification, can have a lower implementation complexity compared to existing FIR and IIR cosine-modulated FBs (CMFBs). The price to pay for the reduced complexity is generally an increased delay. Furthermore, two additional attractive features of the proposed FBs are that they are asymmetric in the sense that one of the analysis and synthesis banks has a lower computational complexity compared to the other, which can be beneficial in some applications, and that the number of distinct coefficients is small, which facilitates the design of FBs with large numbers of channels.  相似文献   

12.
In this paper, new design and factorization methods of two-channel perfect reconstruction (PR) filter banks (FBs) with casual-stable IIR filters are introduced. The polyphase components of the analysis filters are assumed to have an identical denominator in order to simplify the PR condition. A modified model reduction is employed to derive a nearly PR causal-stable IIR FB as the initial guess to obtain a PR IIR FB from a PR FIR FB. To obtain high quality PR FIR FBs for carrying out model reduction, cosine-rolloff FIR filters are used as the initial guess to a nonlinear optimization software for solving to the PR solution. A factorization based on the lifting scheme is proposed to convert the IIR FB so obtained to a structurally PR system. The arithmetic complexity of this FB, after factorization, can be reduced asymptotically by a factor of two. Multiplier-less IIR FB can be obtained by replacing the lifting coefficients with the canonical signal digitals (CSD) or sum of powers of two (SOPOT) coefficients.  相似文献   

13.
Design procedures for stable, causal and perfect reconstruction IIR parallel uniform DFT filter banks (DFT FBs) are presented. In particular a family of IIR prototype filters is a good candidate for DFT FB, where a tradeoff between frequency selectivity and numerical properties (as measured by the Weyl-Heisenberg frames theory) could be made. Some realizations exhibiting a simple and a massively parallel and modular processing structure making a VLSI implementation very suitable are shown. In addition, some multipliers in the filters (both the analysis and synthesis) could be made; powers or sum of powers of 2, in particular for feedback loops, resulting in a good sensitivity behavior. For these reasons as well as for the use of low order IIR filters (as compared with conventional FIR filters), the overall digital filter bank structure is efficient for high data rate applications. Some design examples are provided  相似文献   

14.
Perfect reconstruction versus MMSE filter banks in source coding   总被引:1,自引:0,他引:1  
Classically, the filter banks (FBs) used in source coding schemes have been chosen to possess the perfect reconstruction (PR) property or to be maximally selective quadrature mirror filters (QMFs). This paper puts this choice back into question and solves the problem of minimizing the reconstruction distortion, which, in the most general case, is the sum of two terms: a first one due to the non-PR property of the FB and the other being due to signal quantization in the subbands. The resulting filter banks are called minimum mean square error (MMSE) filter banks. Several quantization noise models are considered. First, under the classical white noise assumption, the optimal positive bit rate allocation in any filter bank (possibly nonorthogonal) is expressed analytically, and an efficient optimization method of the MMSE filter banks is derived. Then, it is shown that while in a PR FB, the improvement brought by an accurate noise model over the classical white noise one is noticeable, it is not the case for the MMSE FB. The optimization of the synthesis filters is also performed for two measures of the bit rate: the classical one, which is defined for uniform scalar quantization, and the order-one entropy measure. Finally, the comparison of rate-distortion curves (where the distortion is minimized for a given bit rate budget) enables us to quantify the SNR improvement brought by MMSE solutions  相似文献   

15.
This paper discusses a new approach for implementing flexible frequency-band reallocation (FFBR) networks for bentpipe satellite payloads which are based on variable oversampled complex-modulated filter banks (FBs). We consider two alternatives to process real signals using real input/output and complex input/output FFBR networks (or simply real and complex FFBR networks, respectively). It is shown that the real case has a lower overall number of processing units, i.e., adders and multipliers, compared to its complex counterpart. In addition, the real system eliminates the need for two Hilbert transformers, further reducing the arithmetic complexity. An analysis of the computational workload shows that the real case has a smaller rate of increase in the arithmetic complexity with respect to the prototype filter order and number of FB channels. This makes the real case suitable for systems with a large number of users. Furthermore, in the complex case, a high efficiency in FBR comes at the expense of high-order Hilbert transformers; thus, trade-offs are necessary. Finally, the performance of the two alternatives based on the error vector magnitude (EVM) for a 16-quadrature amplitude modulation (QAM) signal is presented.  相似文献   

16.
This paper studies the design of a class of perfect-reconstruction (PR) nonuniform filter banks (FBs) called recombination nonuniform FBs (RNFBs). They are constructed by merging subbands in a uniform FB with sets of transmultiplexers (TMUXs). It generalizes the RNFBs previously proposed by the authors to allow more general choice of the sampling factors. The spectral inversion and spurious response suppression problems of these new RNFBs using cosine modulation are analyzed, and a simple design method based on a matching condition is proposed. It is also found that the FB and the TMUX in the recombination structure can be designed separately to satisfy the matching condition. In addition, real-time adaptive merging of the channels to provide dynamic nonuniform frequency partitioning is feasible. Another advantage of the RNFBs is that the recombination and processing of the subband signal can be done at the decimated domain of the uniform FB, which greatly reduces its implementation complexity. Design examples show that high quality nonuniform PR FBs with low implementation complexity and variable time-frequency resolution can be obtained by the proposed method.  相似文献   

17.
We present a method for construction of multiwavelet frames for manipulation of discrete signals. The frames are generated by three-channel perfect reconstruction oversampled multifilter banks. The design of the multifilter bankstarts from a pair of interpolatory multifilters. We derive these interpolatory multifilters from the cubic Hermite splines. We use the original preprocessing algorithms, which transform scalar signals into vector arrays that serve as inputs to the oversampled analysis multifilter banks. These preprocessing algorithms do not degrade the approximation accuracy of the transforms of the vectors by multifilter banks. The postprocessing algorithms convert the vector output of the synthesis multifilter banks into scalar signal. The discrete framelets, generated by the designed filter banks, are symmetric and have short support. The analysis framelets have four vanishing moments, whereas the synthesis framelets converge to Hermite splines supported on the interval [-1,1]  相似文献   

18.
We have made explicit the precise connection between the optimization of orthonormal filter banks (FBs) and the principal component property: the principal component filter bank (PCFB) is optimal whenever the minimization objective is a concave function of the subband variances of the FB. This explains PCFB optimality for compression, progressive transmission, and various hitherto unnoticed white-noise, suppression applications such as subband Wiener filtering. The present work examines the nature of the FB optimization problems for such schemes when PCFBs do not exist. Using the geometry of the optimization search spaces, we explain exactly why these problems are usually analytically intractable. We show the relation between compaction filter design (i.e., variance maximization) and optimum FBs. A sequential maximization of subband variances produces a PCFB if one exists, but is otherwise suboptimal for several concave objectives. We then study PCFB optimality for colored noise suppression. Unlike the case when the noise is white, here the minimization objective is a function of both the signal and the noise subband variances. We show that for the transform coder class, if a common signal and noise PCFB (KLT) exists, it is, optimal for a large class of concave objectives. Common PCFBs for general FB classes have a considerably more restricted optimality, as we show using the class of unconstrained orthonormal FBs. For this class, we also show how to find an optimum FB when the signal and noise spectra are both piecewise constant with all discontinuities at rational multiples of π  相似文献   

19.
Multistandard channelisation for base stations is a big application of generalised discrete Fourier transform modulated filter banks (GDFT‐FBs) in digital communications. For technologies such as software‐defined radio and cognitive radio, nonuniform channelisers must be used if frequency bands are shared by different standards. However, GDFT‐FB‐based nonuniform channelisers can suffer from high filter orders when applied to wideband input signals. In this paper, various combinations of GDFT‐FB with the frequency response masking technique are proposed and evaluated for both uniform and nonuniform channelisation applications. Results show that the proposed techniques achieve savings in both the number of filter coefficients and the number of operations per input sample. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
We present a method for designing optimal biorthogonal wavelet filter banks (FBs). Joint time–frequency localization of the filters has been chosen as the optimality criterion. The design of filter banks has been cast as a constrained optimization problem. We design the filter either with the objective of minimizing its frequency spread (variance) subject to the constraint of prescribed time spread or with the objective of minimizing the time spread subject to the fixed frequency spread. The optimization problems considered are inherently non-convex quadratic constrained optimization problems. The non-convex optimization problems have been transformed into convex semidefinite programs (SDPs) employing the semidefinite relaxation technique. The regularity constraints have also been incorporated along with perfect reconstruction constraints in the optimization problem. In certain cases, the relaxed SDPs are found to be tight. The zero duality gap leads to the global optimal solutions. The design examples demonstrate that reasonably smooth wavelets can be designed from the proposed filter banks. The optimal filter banks have been compared with popular filter banks such as Cohen–Daubechies–Feauveau biorthogonal wavelet FBs, time–frequency optimized half-band pair FBs and maximally flat half-band pair FBs. The performance of optimal filter banks has been found better in terms of joint time–frequency localization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号